

Rev. 0 7/28/98

Site Assessment Report for Oil/Water Separator and Product Line Investigation

at

Naval Air Station Whiting Field Milton, Florida

Southern Division
Naval Facilities Engineering Command
Contract Number N62467-94-D-0888
Contract Task Order 0037

SITE ASSESSMENT REPORT OIL/WATER SEPARATOR AND PRODUCT LINE INVESTIGATION

NAVAL AIR STATION WHITING FIELD MILTON, FLORIDA

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Southern Division
Naval Facilities Engineering Command
2155 Eagle Drive
North Charleston, South Carolina 29406

Submitted by:
Brown & Root Environmental
661 Anderson Drive
Foster Plaza 7
Pittsburgh, Pennsylvania 15220

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0037

JULY 1998

PREPARED BY:

PAUL E. CALLIGAN, P.G. TASK ORDER MANAGER

FLORIDA LICENSE No. PG-0001864 BROWN & ROOT ENVIRONMENTAL

TALLAHASSEE, FLORIDA

APPROVED FOR SUBMITTAL BY:

DEBBIE WROBLEWSKI PROGRAM MANAGER

BROWN & ROOT ENVIRONMENTAL PITTSBURGH, PENNSYLVANIA

Brown & Root Environmental

1311 Executive Center Drive Ellis Building, Suite 220 Tallahassee, FL 32301-5067

(850) 656-5458

FAX: (850) 656-7403

BRE/TLH-98-047/7648-7.2.3

28 July, 1998

Project Number 7648

Mr. Jim Cason Remedial Project Manager Florida Department of Environmental Protection Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Reference:

Clean Contract No. N62467-94-D0888

Contract Task Order No. 0037

Subject:

Site Assessment Report for

Oil/Water Separator and Product Line Investigation

NAS Whiting Field, Milton, Florida

Dear Mr. Cason:

On behalf of the Department of the Navy, Southern Division, Naval Facilities Engineering Command, (SOUTHDIV), Brown & Root Environmental is pleased to submit for your review and approval, two copies of the Site Assessment Report (SAR) for the subject site.

If you have any questions regarding this assessment or require additional information, please contact me at (850) 656-5458.

Sincerely,

Paul E. Calligan, P.G.

Task Order Manager

/pc

Enclosures (2)

C:

Mr. Nick Ugolini, SOUTHDIV

Ms. D. Evans-Ripley, SOUTHDIV (w/o enclosure)

Mr. Jim Holland, NAS Whiting Field Ms. D. Wroblewski (w/o enclosure)

Mr. A. Kendrick

EXECUTIVE SUMMARY

Brown & Root Environmental (B&R Environmental) has completed a Site Assessment (SA) at the above-referenced facility in accordance with the requirements of Chapter 62-770, Florida Administrative Code (FAC). This Site Assessment Report (SAR) has been submitted to the Florida Department of Environmental Protection (FDEP) for approval.

B&R Environmental performed the following tasks during the SA:

- Reviewed available Navy documents to: 1) identify potential sources and receptors for petroleum hydrocarbons in the vicinity; 2) evaluate private potable wells in a 0.25-mile radius and public water supply wells within a 0.50-mile radius; 3) locate nearby surface water bodies; and 4) to determine surface hydrology and drainage;
- Reviewed the Contamination Assessment Report previously prepared for the oil/water separator affiliated with tank system #2993 to determine appropriate boring locations and monitoring well locations;
- Reviewed the Product Line Closure Report prepared for the JP-5 product line affiliated with ASTs
 #2891 and #2892 to determine appropriate boring locations and monitoring well locations;
- Conducted a direct push investigation which included the installation of 34 soil borings for collecting soil samples for field screening using a Flame Ionization Detector (FID);
- Collected nine soil samples for laboratory analysis of the Kerosene Analytical Group parameters to confirm the field screening results.

Evaluation of soil assessment data indicates that "excessively contaminated soil", as defined by Rule 62-770.200, FAC, is present at the former oil/water separator site and at four locations along the abandoned JP-5 product line.

The areal extent of the "excessively contaminated soil" at the oil/water separator is approximately 120 feet by 28 feet. The "excessively contaminated soil" is primarily found in the vicinity of the former oil/water separator and associated sludge tank and along the drain which carried runoff from the parking lot to the oil/water separator. The "excessively contaminated soil" extends to a maximum depth of 22 feet below land surface in the immediate vicinity of the sludge tank but is limited to the upper 10 to 15 feet elsewhere within the plume.

The presence of "excessively contaminated soil" along the abandoned JP-5 product line is limited to the area of the former dispensing facility southwest for the intersection of Hornet and Enterprise Streets, the

product line junction at the corner of Hornet and Saratoga Streets, and at the product line pumping station near the eastern end of Hornet Street. The aerial extent of "excessively contaminated soil" at the former dispensing facility is approximately 90 feet by 35 feet. The vertical extent of "excessively contaminated soil" extends to a maximum depth of approximately 19 feet in two borings but is limited to the upper 10 feet in the remaining borings. "Excessively contaminated soil" was only detected in one soil boring at the former product line pump station. The maximum depth at which excessively contaminated soil was detected at this location was 13 feet bls.

An extensive area of "excessively contaminated soil" was detected in the area of the product line junction. However, review of the preliminary data collected during this investigation and evaluation of historical data from previous investigations conducted in the vicinity suggests that the product line junction plume is comingled with the North Field Industrial Area petroleum plume. Therefore, the product line junction will be addressed as part of the ongoing IR investigation being conducted at the facility. No data from the product line junction is included in this report.

Based on the limited vertical extent of "excessively contaminated soil" (typically < 20 feet bls) and the deep water table (approximately 90 feet bls), a groundwater investigation was not conducted as part of this SA.

Based on the presence of "excessively contaminated soil", B&R Environmental recommends that a Remedial Action Plan (RAP) be developed to evaluate alternatives for remediating the "excessively contaminated soil".

EXECUTIVE SUMMARY

Brown & Root Environmental (B&R Environmental) has completed a Site Assessment (SA) at the above-referenced facility in accordance with the requirements of Chapter 62-770, Florida Administrative Code (FAC). This Site Assessment Report (SAR) has been submitted to the Florida Department of Environmental Protection (FDEP) for approval.

B&R Environmental performed the following tasks during the SA:

- Reviewed available Navy documents to: 1) identify potential sources and receptors for petroleum hydrocarbons in the vicinity; 2) evaluate private potable wells in a 0.25-mile radius and public water supply wells within a 0.50-mile radius; 3) locate nearby surface water bodies; and 4) to determine surface hydrology and drainage;
- Reviewed the Contamination Assessment Report previously prepared for the oil/water separator affiliated with tank system #2993 to determine appropriate boring locations and monitoring well locations:
- Reviewed the Product Line Closure Report prepared for the JP-5 product line affiliated with ASTs #2891 and #2892 to determine appropriate boring locations and monitoring well locations;
- Conducted a direct push investigation which included the installation of 34 soil borings for collecting soil samples for field screening using a Flame Ionization Detector (FID);
- Collected nine soil samples for laboratory analysis of the Kerosene Analytical Group parameters to confirm the field screening results.

Evaluation of soil assessment data indicates that "excessively contaminated soil", as defined by Rule 62-770.200, FAC, is present at the former oil/water separator site and at four locations along the abandoned JP-5 product line.

The areal extent of the "excessively contaminated soil" at the oil/water separator is approximately 120 feet by 28 feet. The "excessively contaminated soil" is primarily found in the vicinity of the former oil/water separator and associated sludge tank and along the drain which carried runoff from the parking lot to the oil/water separator. The "excessively contaminated soil" extends to a maximum depth of 22 feet below land surface in the immediate vicinity of the sludge tank but is limited to the upper 10 to 15 feet elsewhere within the plume.

The presence of "excessively contaminated soil" along the abandoned JP-5 product line is limited to the area of the former dispensing facility southwest for the intersection of Hornet and Enterprise Streets, the

product line junction at the corner of Hornet and Saratoga Streets, and at the product line pumping station near the eastern end of Hornet Street. The aerial extent of "excessively contaminated soil" at the former dispensing facility is approximately 90 feet by 35 feet. The vertical extent of "excessively contaminated soil" extends to a maximum depth of approximately 19 feet in two borings but is limited to the upper 10 feet in the remaining borings. "Excessively contaminated soil" was only detected in one soil boring at the former product line pump station. The maximum depth at which excessively contaminated soil was detected at this location was 13 feet bls.

An extensive area of "excessively contaminated soil" was detected in the area of the product line junction. However, review of the preliminary data collected during this investigation and evaluation of historical data from previous investigations conducted in the vicinity suggests that the product line junction plume is co-mingled with the North Field Industrial Area petroleum plume. Therefore, the product line junction will be addressed as part of the ongoing IR investigation being conducted at the facility. No data from the product line junction is included in this report.

Based on the limited vertical extent of "excessively contaminated soil" (typically < 20 feet bls) and the deep water table (approximately 90 feet bls), a groundwater investigation was not conducted as part of this SA.

Based on the presence of "excessively contaminated soil", an IRA soil excavation will be performed to remove the source. Subsequent to source removal B&R Environmental will submit a SAR Addendum documenting the results of the IRA.

TABLE OF CONTENTS

SECTIO	<u>ON</u>	<u>PAGE</u>
EXECU.	TIVE SUMMARY	ES-1
1.0 INT	RODUCTION	1-1
1.1 PUF	RPOSE AND SCOPE	1-1
1.	2 SITE DESCRIPTION	1-1
1.	.2.1 Location	1-1
1.	.2.2 Topography and Drainage	1-1
1.	.2.3 Regional Hydrogeology	1-4
1.	.2.4 Land Use	
1.	.2.5 Site Description	1-5
1.	.2.6 Potable Water Well Survey	1-6
1.	.3 SITE HISTORY AND OPERATIONS	1-6
1.	.3.1 Site History	1-6
1.	.3.2 Structural Integrity of Tanks and Lines	1-10
1.	.3.3 Initial Remedial Action	1-10
1.	.3.4 Previous Investigations	1-11
2.0 SU	BSURFACE INVESTIGATION METHODS	2-1
2.	· · · · · · · · · · · · · · · · · · ·	
2.	.2 SOIL BORINGS PROCEDURES	
2.	2.1 Direct-Push Soil Borings	
2.	.3 LITHOLOGIC SAMPLING	
2.	4 SOIL VAPOR ANALYSIS	2-11
2	2.5 SOIL SAMPLING	2-11

TABLE OF CONTENTS (Continued)

<u>SE</u>	CTION		PAGE
3.0	RESULT	TS OF INVESTIGATION	3-1
	3.1	SITE HYDROGEOLOGY	3-1
	3.2	SOIL QUALITY	3-1
	3.2.1	Oil/Water Separator	3-1
	3.2.2	Product Line Dispensing Facility	3-2
	3.2.3	Product Line Pump Station	3-6
	3.3	ESTIMATED MASS OF CONTAMINANTS IN SOIL	3-6
4.0	DISCUS	SION	4-1
5.0	CONCL	USIONS AND RECOMMENDATION	5-1
6.0	REFERE	ENCES	6-1

TABLE OF CONTENTS (Continued)

SECTION	<u>PAGE</u>
APPENDIC	<u>ES</u>
Α	SAR SUMMARY SHEETA-1
В	DISCHARGE NOTIFICATION FORMSB-1
С	CLOSURE REPORT AND IRA REPORT FOR OIL/WATER SEPARATORC-1
D	CLOSURE REPORT FOR PRODUCT LINED-1
E	SOIL BORING LOGSE-1
F	HEADSPACE METHODOLOGY FOR DETERMINING SOIL ORGANIC VAPOR
	CONCENTRATIONSF-1
G	PRE-BURN SOIL LABORATORY DATA SHEETSG-1
Н	SOIL LABORATORY DATA SHEETSJ-1
1	SOIL VOLUME AND CONTAMINANT MASS CALCULATIONSI-1
J	FIELD MEASUREMENTS AND SAMPLING FORMS
	TABLES
<u>NUMBER</u>	<u>PAGE</u>
2-1 SOIL V	APOR MEASUREMENTS FOR OIL/WATER SEPARATOR2-5
2-2 SOIL V	APOR MEASUREMENTS FOR PRODUCT LINE DISPENSING FACILITY2-8
2-3 SOIL V	APOR MEASUREMENTS FOR PRODUCT LINE PUMP STATION2-10
3-1 SUMMA	ARY OF SOIL QUALITY: SELECTED PARAMETERS FROM THE KEROSENE
ANALY	TICAL GROUP3-4

FIGURES

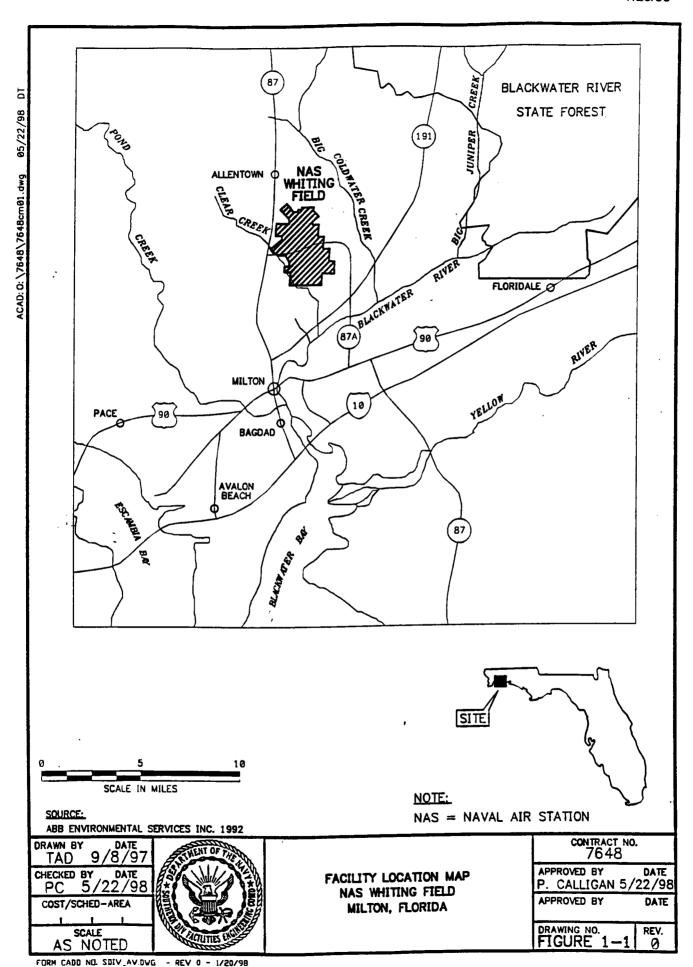
<u>NUMBER</u>	PAGE
1-1 FACILITY LOCATION MAP	1-3
1-2 SITE LOCATION MAP	1-3
1-3 SITE PLAN FOR OIL/WATER SEPARATOR INVESTIGATION	1-7
1-4 SITE PLAN FOR AREA OF PRODUCT LINE INVESTIGATION	1-8
1-5 LOCATION OF POTABLE WATER SUPPLY WELLS	1-9
2-1 SOIL BORING LOCATION MAP FOR OIL/WATER SEPARATOR INVESTIGATION	2-2
2-2 SOIL BORING LOCATION MAP FOR PRODUCT LINE DISPENSING FACILITY	2-3
2-3 SOIL BORING LOCATION MAP FOR PRODUCT LINE PUMP STATION	2-4
3-1 SOIL VAPOR CONCENTRATION MAP FOR OIL/WATER SEPARATOR	3-3
3-2 SOIL VAPOR CONCENTRATION MAP FOR PRODUCT LINE DISPENSING FACILITY	3-5
3-3 SOIL VAPOR CONCENTRATION MAP FOR PRODUCT LINE PUMP STATION	3-7

1.0 INTRODUCTION

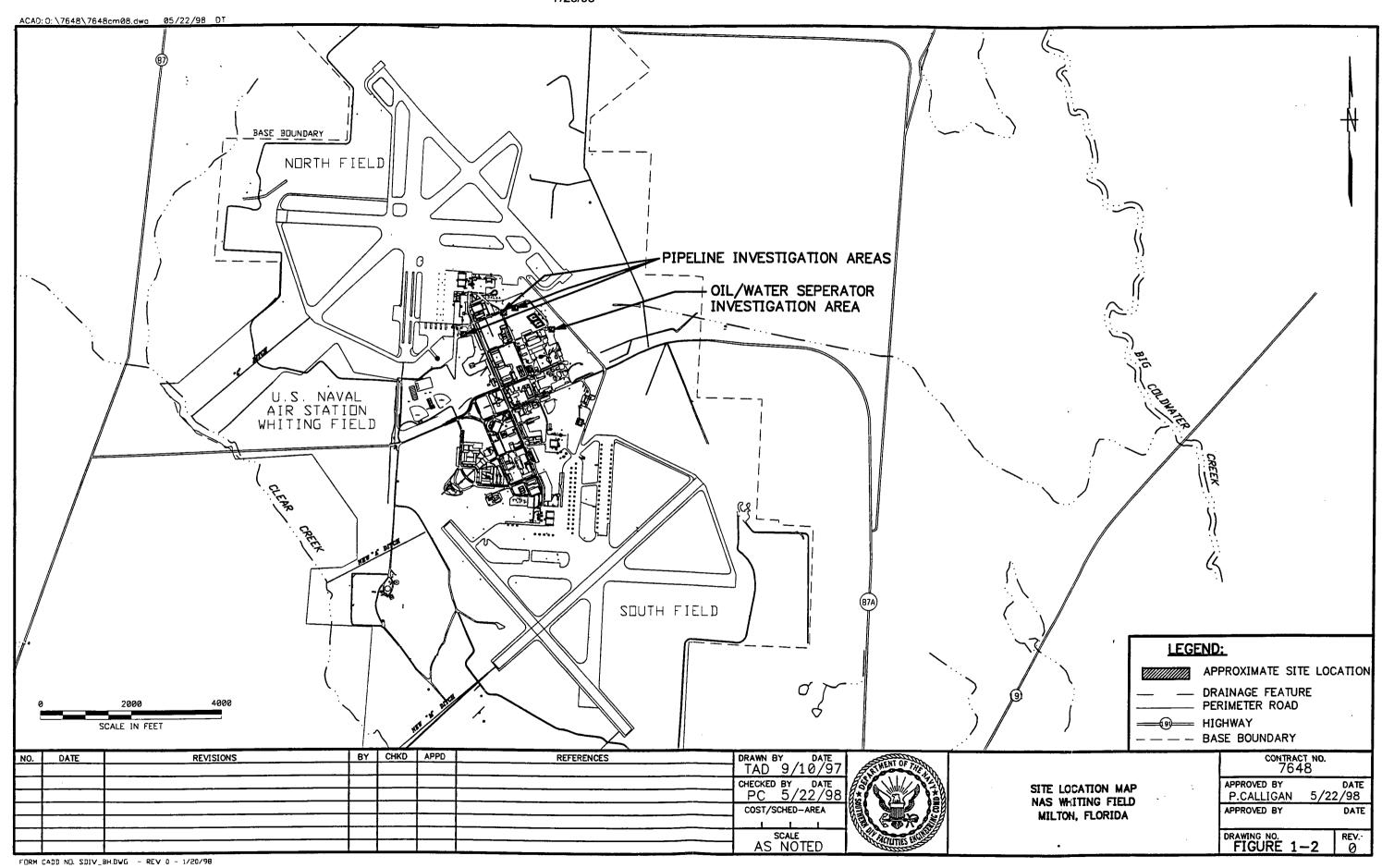
1.1 PURPOSE AND SCOPE

A Site Assessment (SA) was conducted by Brown and Root Environmental (B&R Environmental) for the US Navy (Navy) Southern Division Naval Facilities Engineering Command under Contract Task Order 0037, for the Comprehensive Long-term Environmental Action Navy (CLEAN III), Contract Number N62467-94-D-0888. The SA was conducted at the closed oil/water separator for Tank System 2933A and closed Jet Petroleum No. 5 (JP-5) product line located at the Naval Air Station (NAS) in Milton, Florida. The Florida Department of Environmental Protection (FDEP) Facility Identification Number is 578516386.

The purpose of this SA was to determine the nature and extent of petroleum hydrocarbon impacted soil and groundwater in accordance with the requirements of Chapter 62-770, Florida Administrative Code (FAC). A SAR Summary Sheet, as required by Chapter 62-770, FAC is included in Appendix A.


1.2 SITE DESCRIPTION

1.2.1 Location


NAS Whiting Field is located in Santa Rosa County, which is in Florida's northwest coastal area, approximately 7 miles north of Milton and 20 miles northeast of Pensacola (Figure 1-1). NAS Whiting Field presently consists of two airfields separated by an industrial area. The installation is approximately 3,490 acres in size. Figure 1-2 presents the installation layout and the location of the sites (closed oil/water separator and closed JP-5 product line). The sites are located in the northeast quarter of Section 2, Township 2 North, Range 28 West. The sites are within the United States Geological Survey (USGS), Milton North Quadrangle, 7.5 Minute Series Topographic Map (1987).

1.2.2 Topography and Drainage

NAS Whiting Field is located within the Western Highlands subdivision of the Northern Highlands physiographic province. This zone is characterized by southward sloping hills and plateaus, which have been cut by numerous streams. Elevations within the subdivision generally range from 50 to 200 feet above National Geodetic Vertical Datum (NGVD). Site elevations range from 150 feet to 190 feet above NGVD. Surface water runoff is conveyed to Clear Creek (west and south) and Big Cold Creek (east) by a

Rev. 0 7/28/98

CTO 0037

1-3

system of ditches and storm drains. The drainage system was installed when the Base was constructed in the early 1940's.

1.2.3 Regional Hydrogeology

NAS Whiting Field is underlain by a thick sequence of tertiary sedimentary formations. Information on the regional hydrogeology presented in this section is summarized from the Remedial Investigation and Feasibility Study, Phase IIA, Technical Memorandum No. 4, Hydrogeologic Assessment, prepared by ABB Environmental Services (ABB, 1995).

Groundwater in Northwest Florida occurs within three major aquifer systems. These aquifer systems include the surficial aquifer system (referred to as the sand-and-gravel aquifer in the western panhandle), the intermediate aquifer system and confining unit, and the Floridan aquifer system.

The sand-and-gravel aquifer is the major water-bearing unit in Santa Rosa County. The aquifer consists of a complex sequence of sand, gravel, silt and clay that is estimated to be approximately 350 feet thick in the vicinity of NAS Whiting Field. The sand-and-gravel aquifer consists of river and marine terrace deposits of the Pleistocene age, overlying the Pliocene Citronelle formation. The Citronelle formation, in turn, overlies a coarse clastic Miocene unit at the base of the aquifer. These units vary in thickness from 100 to 700 feet. They typically thin out to the north and east, gradually pinching out in central Walton County. Although composed predominantly of sand, the aquifer contains numerous lenses of clay and gravel that are as much as 60 feet thick. Virtually all of the groundwater used in Santa Rosa County is pumped from the sand-and-gravel aquifer. The aquifer is recharged entirely by rainfall. Throughout most of the Florida panhandle the bottom of the sand-and-gravel aquifer is typically marked by the intermediate aquifer system.

The intermediate aquifer separates the sand-and-gravel aquifer from the Upper Floridan aquifer. The intermediate aquifer consists of the upper Pensacola Clay and the lower Pensacola Clay, separated by a relatively thin, permeable unit know as the Escambia sand. The Miocene clays, which are mixed with silts and marls, are dense with low hydraulic conductivities and provide an effective confining unit in the southern half of Escambia and Santa Rosa Counties. The confining units range in thickness from about 300 feet within Escambia and Santa Rosa Counties to less than 10 feet to the northeast of these counties. The Escambia sand is less than 75 feet thick in the area. The intermediate aquifer system throughout most of Escambia and Santa Rosa Counties is not a water-bearing unit. The unit principally serves as a confining layer between the sand-and-gravel and the upper Floridan aquifers.

The Floridan aquifer system is present throughout the Florida panhandle. The system is over 1,000 feet thick in the vicinity of NAS Whiting Field. In Santa Rosa and Escambia Counties the system consists of an upper and lower aquifer separated by a confining layer (the Bucatunna Clay of the Byram Formation). The carbonate sequence containing the upper and lower Floridan aquifers dips below the level of the Gulf of Mexico in Escambia County and becomes saline. Additionally, the carbonate rock is highly soluble in the acidic groundwater, which causes the water to be highly mineralized. Consequently, the aquifer system is not commonly used as a source of water in the western part of the Florida panhandle.

1.2.4 Land Use

NAS Whiting Field, home of Training Air Wing Five (TRAWING FIVE), was constructed in the early 1940s. It was commissioned as the Naval Auxiliary Air Station Whiting Field in July 1943 and has served as a naval aviation training facility ever since its commissioning. The field's mission has been to train student naval aviators in the use of basic instruments; formation and tactic phases of fixed-wing, propeller-driven aircraft; and basic and advanced helicopter operation.

1.2.5 <u>Site Description</u>

Oil/Water Separator

Tank system 2993A consisted of an oil/water separator, a 500-gallon underground storage tank (UST) used to store jet fuel, and a sludge tank, as shown on Figure 1-3. The oil/water separator provided secondary containment for overfills occurring at the 500-gallon UST, and also received the rainfall collected in a stormwater collection sump from runoff from a near-by fuel truck parking area.

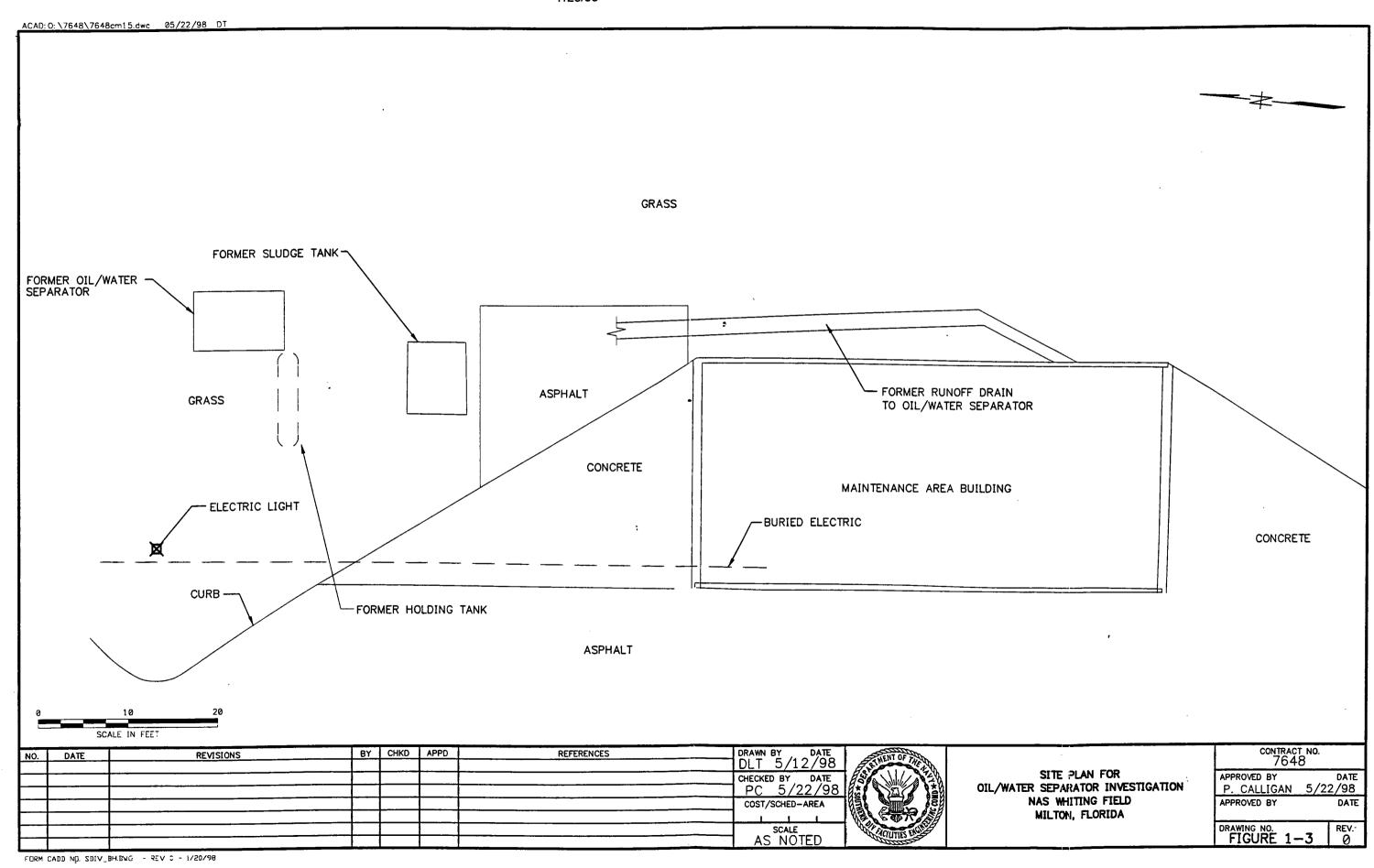
Tank system 2993A was located approximately 200 feet east of Building 2993 in an earthen grassy area which slopes to the east. To the west of the site is an asphalt covered parking area extending approximately 200 feet west to building 2993, the Fuel Contractor's office. Immediately adjacent to the site, along the edge of the asphalt parking area, is a one story metal building set on a concrete slab. This structure is used as a drive through truck maintenance bay. Approximately 400 feet to the northwest of the site are two 230,000-gallon above ground jet fuel tanks within concrete containment and two small storage buildings. To the north of the site is an earthen grassy area which extends approximately 1,000 feet to the North Field runways. To the east and southeast of the site for over ¼ mile is earthen, grassy vacant land.

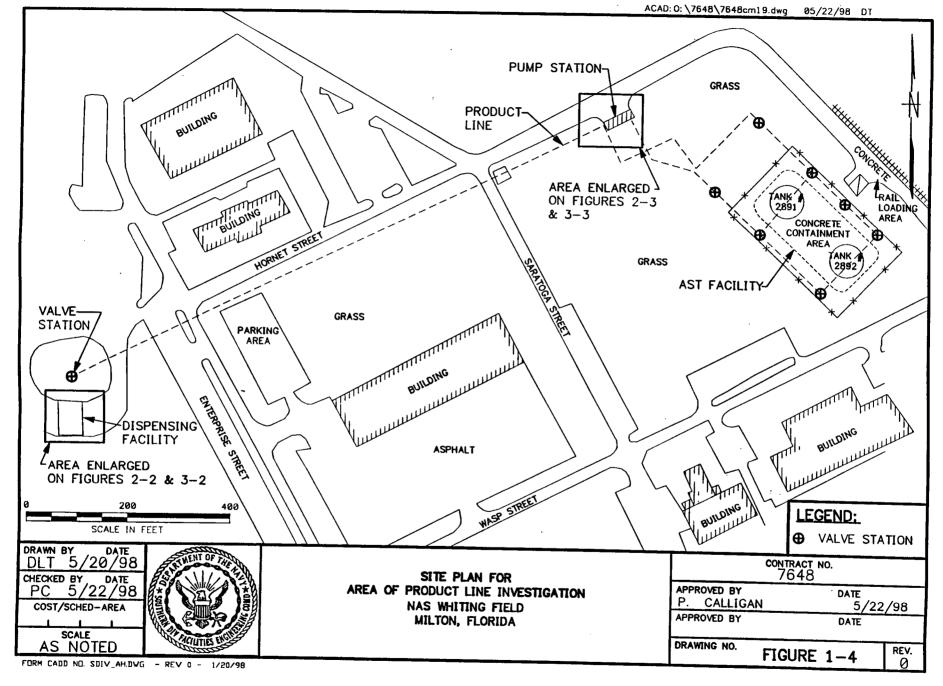
Product Pipeline

The product pipeline investigated during this SA includes a portion of the system of pipelines formerly affiliated with two above ground storage tanks (ASTs) identified as Tank #2891 and Tank #2892. The product line was used to transport jet fuel stored in the ASTs to the dispensing facility. The section of the product line included in this investigation begins at the pump station facility located on Hornet Street, and extends in a southwesterly direction, along the south side of Hornet Street, under Saratoga Street to an abandoned dispensing facility located southwest of the junction of Hornet and Enterprise Streets.

The product pipeline section from the pump station to the dispensing facility consists of 10-inch diameter metal pipe and is approximately 1315 feet in length. The product line maintains a consistent below grade depth of approximately 3 feet except for an above ground junction located at the southeast corner of Hornet Street and Saratoga Street and an exposed portion near the pump station facility. The piping section is located within a relatively flat grassy surface area. A site plan depicting the area of the product line investigation is provided on Figure 1-4.

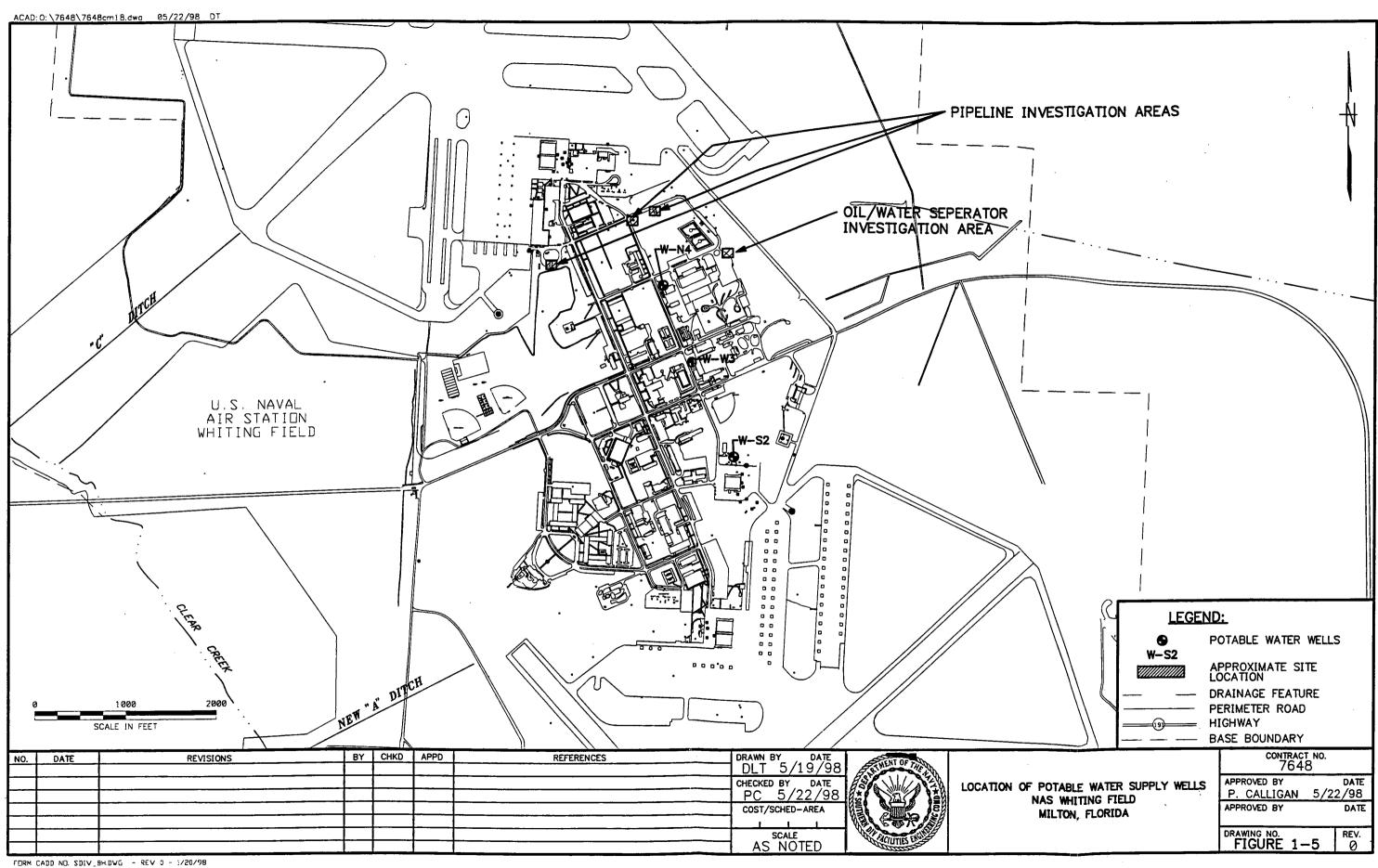
1.2.6 Potable Water Well Survey


The potable water supply information presented in this report was obtained from the Remedial Investigation and Feasibility Study, General Information Report, prepared by ABB Environmental Services, (ABB, 1997). According to this report, potable water for NAS Whiting Field is currently supplied by three wells: North well, W-N4; South well, W-S2; and West well, W-W3. These three wells are within 0.5 mile radius of the former oil/water separator and the closed product line. Six additional potable water supply wells were located at NAS Whiting Field, however, these wells have been abandoned in place. The locations of the currently used wells are shown on Figure 1-5. The three production wells are all screened in the sand-and-gravel aquifer from approximately 150 to 350 feet below land surface (bls).


1.3 SITE HISTORY AND OPERATIONS

1.3.1 Site History

Oil/Water Separator


Tank system 2993 was put into service in 1981. In September 1994, during an inspection of the oil/water separator system by the FDEP, free product was observed in the northeast compliance well. A Discharge Notification Form (DNF) filed for the release listed the type of substance discharged as jet fuel. Product

Rev. 0 7/28/98

Rev. 0 7/28/98

was removed from the well and the system was taken out of service. The DNF form filed for the release is included in Appendix B.

In December 1996 the oil/water separator, UST, and sludge tank were removed. At the time the oil/water separator was removed the separator's drain pipe from the UST had been physically isolated from the UST. The Closure Report for the oil/water separator is provided in Appendix C.

Product Line

The JP-5 product line was put into service in 1961. The product line was taken our of service through inplace closure by Environmental Recovery, Inc. (ERI). The closure was conducted from February 26, 1996 through February 29, 1996. A product line closure assessment was performed by Jim Stidham & Associates, Inc. (JSA) from March 26, 1996 through March 29, 1996. The closure report for the product line is provided in Appendix D.

1.3.2 Structural Integrity of Tanks and Lines

According to Base personnel, no tank and line integrity testing was ever performed on tank system 2993 or the JP-5 product line.

1.3.3 Initial Remedial Action

Oil/Water Separator

In December 1996, the oil/water separator, sludge tank and 500 gallon UST associated with tank system 2993 were removed. During removal of the tank system, an Initial Remedial Action (IRA) was conducted to remove "excessively contaminated soil" in the area of the oil/water separator. Approximately 34 cubic yards of soil were removed from an excavation approximately 10 feet by 15 feet by 6 feet in depth. The IRA reporting forms are provided in Appendix C.

Product Line

No IRA activities were performed at the product line.

1.3.4 Previous Investigations

Oil/Water Separator

In May 1995, a CAR investigation was initiated to investigate the areal extent of petroleum hydrocarbons in the groundwater and soil in the vicinity of the oil/water separator system (W. Grady Swan, Inc. Project No. WGS95-0094). A soil vapor assessment was completed by advancing twenty one (21) soil borings (borings 1 to 21) to 5 feet below land surface (bls) and two (2) deep borings (borings 22 and 23) to 31 feet bls and 45 feet bls in the vicinity of the oil/water separator. Soil vapor readings collected from soil samples indicated that "excessively contaminated soil" as defined in Chapter 62-770, FAC for kerosene type fuel releases was present. The "excessively contaminated soil" was identified from the land surface to approximately 5 feet bls within an area radiating outward 10 to 15 feet from the oil/water separator, and to a depth of 20 to 35 feet bls within and immediately adjacent to the oil/water separator. To confirm the vertical extent of petroleum constituents in the soil, (as defined by OVA data), samples were collected from borings 22 and 23 at depths of 29 to 31 feet bls and 45 feet bls, respectively. These samples were analyzed for volatile organic halocarbons, volatile organic aromatics, and polynuclear aromatic hydrocarbons. The results of the soil laboratory analysis reported all parameters below the laboratory method detection limits.

The CAR investigation identified an intermittent perched aquifer at approximately 4 to 10 feet bls beneath the Site. Five monitoring wells were installed by hand auger during the CAR investigation in May 1995 to determine groundwater flow direction, hydraulic gradient, and the horizontal extent of groundwater contamination in the perched aquifer. On June 2, 1995 groundwater samples were collected from monitoring wells MW-1, MW-4, MW-5 and the southwest compliance well for Kerosene Analytical Group parameters. The water quality results indicated the perched aquifer was contaminated with dissolved hydrocarbons above FDEP target levels established in Chapter 62-770, FAC at the "source" location (MW-4).

The CAR investigation concluded that a thin localized perched aquifer underlies the area near the oil/water separator. The perched aquifer is located near the surface and contains groundwater only sporadically, primarily following heavy rainfall. During the initial sampling event all of the monitoring wells with the exception of one, contained less than 1 foot of water. During the second sampling event three of the monitoring wells were dry and the other two contained less than 0.1 foot of water.

The CAR identified the source of contamination to be stormwater discharges from the Fuel Truck Parking Area to the leaking oil/water separator.

Product Pipeline

On March 27, 1996, a Closure Assessment was performed on the product pipeline system once affiliated with two ASTs identified as Tank No. 2891 and Tank No. 2892. The product pipeline system was taken out of service through in-place closure (Jim Stidham & Associates, Inc., April, 1996).

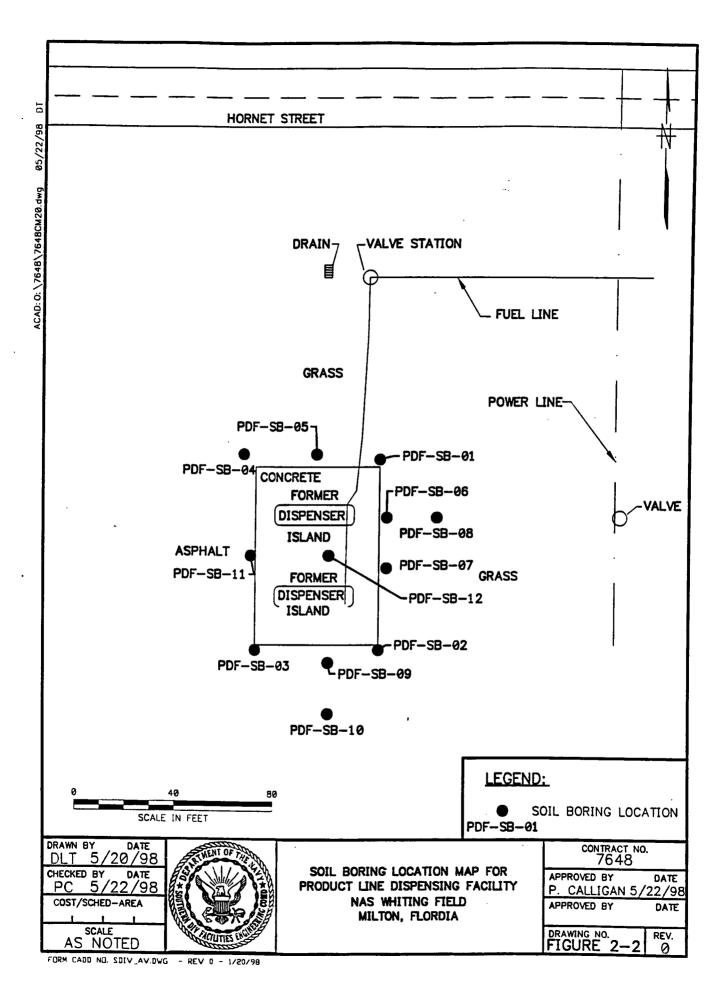
As part of the Closure Assessment, 52 soil borings were advanced to assess soil conditions for the product pipeline system. Of these soil borings, 17 (SB-1 through SB-17) were advanced along the product line extending from the dispensing area to the pump station facility; 20 borings (SB-18 through SB-38) were installed along the product line extending from the pump station to the ASTs; seven borings (SB-39 to SB-45) were advanced adjacent to the rail loading area; five borings (SB-46 through SB-50)-were installed around the dispensing area; and two additional borings (SB-51 and SB-52) were installed at the pump station facility. The soil borings were completed at depths of 4 to 7 feet bls except at SB-33, SB-34, and SB-35, where the boring terminated at 12 feet bls, 20 feet bls, and 12 feet bls, respectively. Soil samples from the borings were collected at two foot intervals and screened for hydrocarbon vapors. Results of the soil vapor screening identified "excessively contaminated soil," as defined in Chapter 62-770, FAC for kerosene type fuel release, at boring locations SB-1, SB-12, and SB-17. Borings SB-1, SB-12, and SB-17 are located near the dispensing facility, pipe junction, and pump station facility, respectively. A DNF was filed with the FDEP due to the detection of "excessively contaminated soil". The DNF listed the type of substance discharged as jet fuel with the cause for the leak identified as unknown. The DNF is provided in Appendix B. The Closure Assessment Report is provided in Appendix D.

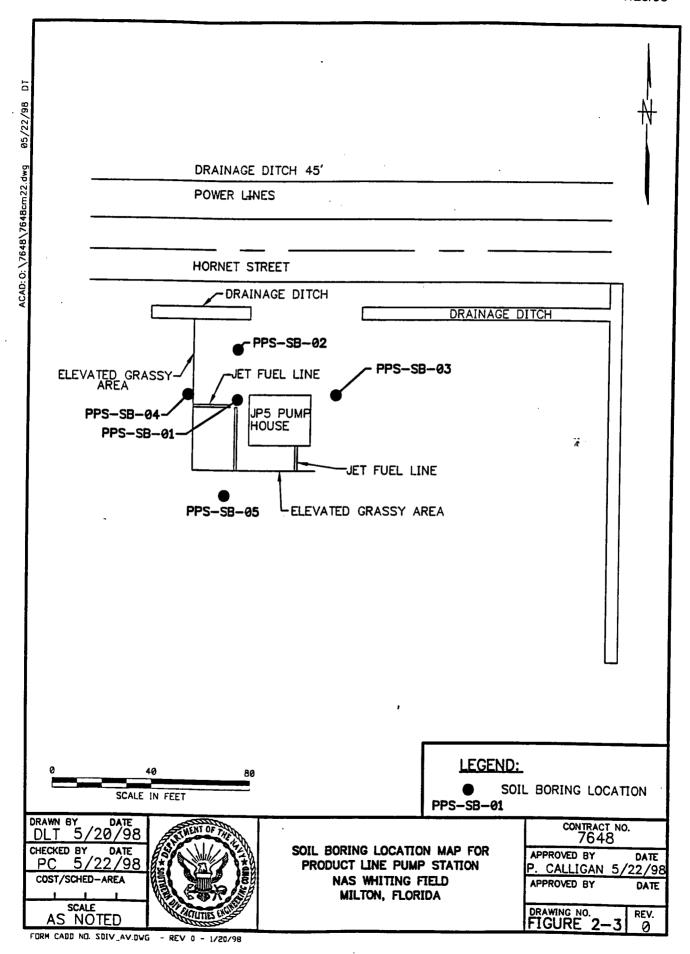
Based on the results of the product line closure assessment this investigation was limited to the areas of the product line where "excessively contaminated soil" was detected (former dispensing facility, product line junction and pump station facility). Review of the data from the preliminary investigation and evaluation of historical data from previous investigations suggests that the contaminant plume detected at the product line junction is co-mingled with the North Field Industrial Area petroleum plume. Therefore, no further investigation was performed at the product line junction and any additional assessment for that location will be addressed under the IR program. No data from the product line junction is included in this report.

2.0 SUBSURFACE INVESTIGATION METHODS

2.1 QUALITY ASSURANCE

The site investigation was conducted in accordance with the Standard Operating Procedures prescribed by the FDEP Quality Assurance Section Document DER-001/92, and adopted by the B&R Environmental Comprehensive Quality Assurance Plan (CQAP) Number 870055G.


2.2 SOIL BORING PROCEDURES


2.2.1 <u>Direct-Push Soil Borings</u>

A soil vapor assessment was conducted at the site by B&R Environmental on November 18 through November 23, 1997. Seventeen soil borings were advanced in the vicinity of the oil/water separator (OWS-SB-01 through OWS-SB-17). Twelve soil borings were advanced in the vicinity of the former product line dispensing facility (PDF-SB-01 through PDF-SB-12). Five soil borings were advanced in the vicinity of the product line pump station (PPS-SB-01 through PPS-SB-05). Soil samples were collected from each boring for the purpose of organic vapor screening and for lithologic description. Soil borings were advanced using a truck mounted, direct-push, hydraulic soil probe. Soil samples were collected using two-foot long stainless steel split barrel samplers lined with plastic sleeves. Soil samples were collected continuously from the ground surface to 16 feet bls or until two consecutive samples with headspace results below the 50 parts per million (ppm) threshold for "excessively contaminated soil" were obtained. Soil boring locations and boring completion depths are summarized on Figures 2-1, 2-2 and 2-3; and Tables 2-1, 2-2 and 2-3 respectively. Soil boring logs are provided in Appendix E.

Prior to the advancement of the soil probe at each boring location, the probe was decontaminated according to B&R Environment's CQAP. Soil samples were visually inspected for evidence of oil staining. Soil vapor analysis was conducted on each soil sample collected from the Vadose zone using an Organic Vapor Analyzer-Flame Ionization Detector (OVA-FID). Soil vapor analysis was performed in accordance with the headspace method prescribed by Rule 62-770.200(2) FAC. This method of headspace screening is presented in detail in Appendix F. Headspace concentrations from soil vapor analysis are summarized in Tables 2-1, 2-2 and 2-3.

2-4

TABLE 2-1

SOIL VAPOR MEASUREMENTS OIL/WATER SEPARATOR INVESTIGATION NAS WHITING FIELD MILTON, FLORIDA PAGE 1of 3

			Headspace Readings (ppm*)		
Soil Boring No.	Date of Measurement	Sample Interval (feet bis)	Total Organic Reading	Carbon Filtered Reading	Net Reading
OWS-SB-01	11-18-97	2	ND**	ND	ND
OVVO-0D-01	11-10-31	4	ND	ND ND	ND
		7	150	50	100
		10	170	30	140
		13	800	20	780
		16	150	ND ND	150
		19	10	ND	10
		22	ND	ND	ND
OWS-SB-02	11-18-97	2	ND	ND ND	ND
0110-08-02	11-10-57	4	ND	ND ND	ND
		7	ND	ND	ND
		10	ND	ND I	ND
		13	ND	ND ND	ND
		16	ND	ND ND	ND
OWS-SB-03	11-18-97	2	ND	ND	ND
3 32 33	11 10 07	4	ND	ND	ND
		7	ND	ND ND	ND
		10	20	20	ND
		13	ND	ND	ND
		16	ND	ND	ND
OWS-SB-04	11-18-97	2	ND	ND	ND
	11.100.	4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND	ND
		13	ND	ND	ND
		16	ND	ND	ND
OWS-SB-05	11-18-97	2	ND	ND	ND
		4	5	ND	5
		7	>5000	ND	>5000
		10	1500	ND	1500
		13	250	ND	250
		16	1000	ND	1000
		19	250	50	200
	ĺ	22	50	10	40
		25	ND	ND	ND

TABLE 2-1
PAGE 2 of 3

			Headspace Readings (ppm*)			
Soil Boring No.	Date of Measurement	Sample Interval (feet bis)	Total Organic Reading	Carbon Filtered Reading	Net Reading	
OWS-SB-06	11-18-97	2	ND	ND	ND	
		4	ND	ND	ND	
		7	ND	ND	ND	
		10	ND	ND	ND	
		13	ND	ND	ND	
		16	ND	ND	ND	
OWS-SB-07	11-18-97	2	ND	ND	ND	
	· ·	4	ND	ND	ND	
		7	ND	ND	ND	
		10	ND	ND	ND	
		13	ND	ND	ND	
		16	ND	ND	ND	
OWS-SB-08	11-19-97	2	ND	ND	ND	
		4	ND	ND	ND	
		7	ND	ND	ND	
		10	400	ND	400	
		13	400	ND	400	
		16	100	ND	100	
		19	5	ND	5	
		22	ND	ND	ND	
		25	ND	l ND	ND	
OWS-SB-09	11-19-97	2	ND	ND	ND	
		4	ND	ND	ND	
		7	ND	ND	ND	
		10	ND	l ND	ND	
		13	ND	ND	ND	
		16	ND	ND	ND	
OWS-SB-10	11-19-97	2	ND	ND	ND	
		4	5	ND	5	
		7	250	100	150	
		10	100	100	ND	
		13	200	100	100	
		16	200	ND	200	
1		19	200	ND	200	
		22	200	ND	200	
		25	5	ND	5	
İ		28	ND	ND	ND	
OWS-SB-11	11-19-97	2	ND	ND	ND	
		4	ND	ND ND	ND	
		7	ND	ND ND	ND	
		10	ND	ND ND	ND	
		13	ND	ND	ND	
		1 13	[12]	I NIJ I	[31]	

TABLE 2-1 PAGE 3 of 3

			Head	space Readings (p	pm*)
Soil Boring No.	Date of	Sample Interval	Total Organic	Carbon Filtered	Net Reading
	Measurement	(feet bis)	Reading	Reading	
OWS-SB-12	11-19-97	2	ND	ND	ND
		4	ND	ND	ND
		7	200	50	150
		10	100	50	50
		13	150	100	50
		16	100	ND	100
		19	100	30	70
		22	25	10	15
		25	ND	ND	ND
OWS-SB-13	11-19-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND	ND
		13	ND	DИ	ND
		16	ND	ND	ND
OWS-SB-14	11-19-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND	ND
		13	· ND	ND	ND
		16	ND	ND	ND
OWS-SB-15	11-20-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND	ND
		13	ND	ND	ND
		16	ND	ND	ND
OWS-SB-16	11-20-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
	ļ	10	ND	ND	ND
	1	13	ND	ND	ND
		16	ND	ND	ND

^{*} Parts per million** Non-detected

TABLE 2-2

SOIL VAPOR MEASUREMENTS PRODUCT LINE DISPENSING FACILITY NAS WHITING FIELD MILTON, FLORIDA PAGE 1 OF 2

			Headspace Readings (ppm*)		
Soil Boring No.	Date of	Sample Interval	Total Organic	Carbon Filtered	Net Reading
	Measurement	(feet bls)	Reading	Reading	
PDF-SB-01	11-20-97	2	ND**	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND	ND
		13	ND	ND	ND
		16	ND	ND	ND ND
PDF-SB-02	11-20-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND	ND
		13	ND	ND	ND
		16	ND	ND	ND
PDF-SB-03	11-20-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND ND	ND
		10	ND	ND ND	ND
		13	ND	ND	ND
55555	11.22.22	16	ND	ND	ND
PDF-SB-04	11-20-97	2	ND	ND	ND
•		4	ND	ND ND	ND
		7	ND	ND ND	ND
		10	ND	ND ND	ND
		13	ND ND	ND ND	ND ND
DDE OD OF	44.00.07	16	ND ND	ND ND	ND
PDF-SB-05	11-20-97	2	ND	ND ND	ND
		4 7	ND	ND ND	ND ND
		7	ND ND	ND ND	ND ND
		10	ND ND	ND ND	
		13	ND ND	ND ND	ND ND
PDF-SB-06	44 20 07	16	ND ND	ND	ND
	11-20-97	2 4	ND ND	ND ND	ND ND
		7	100	10	90 90
		1	400	90	310
		10	300	20	280
		16	50	20	30
		19	50 50	15	35
		22	5	ND	5
		25	ND	ND ND	ND

TABLE 2-2 PAGE 2 OF 2

			Head	Ispace Readings (p	ppm*)
Soil Boring No.	Date of	Sample Interval	Total Organic	Carbon Filtered	Net Reading
	Measurement	(feet bis)	Reading	Reading	
PDF-SB-07	11-21-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND ND	ND
		13	ND	ND	ND
	<u>,</u>	16	ND	ND	ND
PDF-SB-08	11-21-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND	ND
		13	ND	ND	ND
		16	ND	ND	ND
PDF-SB-09	11-21-97	2	ND	ND	ND
		4	ND	ND .	ND
		7	>5000	ND	>5000
		10	>5000	50	>5000
		13	200	ND	200
		16	15	ND	15
		19	100	ND	100
		22	• 30	ND	30
		25	2	ND	2
		27	ND	ND	ND
PDF-SB-10	11-21-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND	ND
		13	ND	ND	ND
		16	ND	ND	ND
PDF-SB-11	11-21-97	2	ND	ND	ND
		4	ND	ND	ND
1		7	ND	ND	ND
		10	ND	ND	ND
		13	ND	ND	ND
		16	ND	ND	ND
PDF-SB-12	11-21-97	2	ND	ND	ND
		4	ND	ND	ND
		7	400	45	355
		10	400	20	380
		13	ND	ND	ND
		16	ND	ND	ND

^{*} Parts per million** Non-detected

TABLE 2-3

SOIL VAPOR MEASUREMENTS
PRODUCT LINE PUMP STATION
NAS WHITING FIELD

MILTON, FLORIDA

	* · · · · · · · · · · · · · · · · · · ·	<u> </u>	Headspace Readings (ppm*)		
Soil Boring No.	Date of	Sample Interval	Total Organic	Carbon Filtered	Net Reading
	Measurement	(feet bis)	Reading	Reading	
PPS-SB-01	11-23-97	2	ND**	ND	ND
		4	2000	ND	2000
		7	100	ND	100
		10	250	ND	250
		13	50	ND	50
		16	10	ND	10
		19	ND	ND	ND
PPS-SB-02	11-23-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND	ND
		13	ND	ND	ND
		16	ND	ND	ND
PPS-SB-03	11-23-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND	ND
		13	ND	ND	ND
		16	ND	ND	ND
PPS-SB-04	11-23-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
		10	ND	ND '	ND
		13	ND	ND	ND
		16	ND	ND	ND
		19	ND	ND	ND
PPS-SB-05	11-23-97	2	ND	ND	ND
		4	ND	ND	ND
		7	ND	ND	ND
	1	10	ND	ND	ND
		13	ND	ND	ND
	i	16	ND	ND	ND
		19	ND	ND	ND

^{*} Parts per million

^{**} Non-detected

In accordance with Rule 62-770.600(3), FAC, three samples were collected per site for laboratory analysis to confirm the presence of petroleum-related compounds in the vadose zone soils. The samples were collected from locations exhibiting high, medium and low screening results based on FID headspace analysis.

Decontamination of sampling equipment generated rinse water which was containerized in 55-gallon drums. Soil cuttings generated during the DPT boring installation were placed in a 55-gallon steel drums. A composite soil sample was collected from the drums and analyzed by USEPA Methods SW-846 8010 (volatile organic halocarbons), 8020 (volatile organic aromatics), 8310 (polynuclear aromatic hydrocarbons), total recoverable petroleum hydrocarbons (FLPRO), total halides, and eight RCRA metals. The soil and decontamination fluids will be removed for proper disposal by a Florida-licensed waste hauler. Pre-burn soil laboratory data sheets are included in Appendix G.

2.3 LITHOLOGIC SAMPLING

Representative soil samples were collected during the soil vapor assessment to evaluate the shallow subsurface geologic conditions at the site. Samples used for lithologic description were collected from stainless steel split spoon samplers lined with plastic sleeves. Soil boring logs are included in Appendix E.

2.4 SOIL VAPOR ANALYSIS

Headspace analysis was conducted on soil samples collected during the soil vapor assessment using an OVA-FID. The soil vapor analysis was performed according to the headspace method prescribed in Rule 62-770.200(2), FAC. Screened soil samples with corrected headspace levels in excess of 50 ppm are defined as "excessively contaminated soil" at diesel contaminated sites. The Headspace Methodology for Determining Soil Organic Vapor Concentrations is described in detail in Appendix F.

2.5 SOIL SAMPLING

Soil samples for laboratory analysis were collected at the oil/water separator from soil borings OWS-SB-01, OWS-SB-05, and OWS-SB-09. One laboratory sample was collected at the product line dispensing facility from soil boring PDF-SB-01, and two samples were collected from PDF-SB-06. One laboratory sample was collected at the product line pumping station from PPS-SB-02 and two samples were collected from PPS-SB-02. These samples were analyzed by USEPA

Methods 8020 (volatile organic aromatics), 8310 (polynuclear aromatic hydrocarbons) and total recoverable petroleum hydrocarbon (TRPH) by the FLPRO analytical method.

These samples were collected to confirm the presence of petroleum-related compounds. The laboratory data reports for soil analyses are included in Appendix J.

3.0 RESULTS OF INVESTIGATION

3.1 SITE HYDROGEOLOGY

The type and distribution of sediments encountered at the oil/water separator, the product line dispensing facility and the product line pump station were similar in nature. The sediments from near surface to approximately 3 to 5 feet bls consisted of a fine to medium grained quartz sand, light brown to yellowish in color with some silt. The lower portion of this sand was noted as wet, however, the wet zone was typically less than one foot thick. Based on historical water levels in the monitoring wells previously installed at the oil/water separator, this wet zone is not considered a significant water bearing zone.

Underlying the sand is an alternating sequence of sandy clay, clay and clayey sand, which extends to a depth of approximately 25 feet bls. These sediments have a mottled appearance and range in color from reddish brown to light brown to gray, with a medium stiff density and a slightly plastic consistency. The series is predominantly dry with some zones noted as moist.

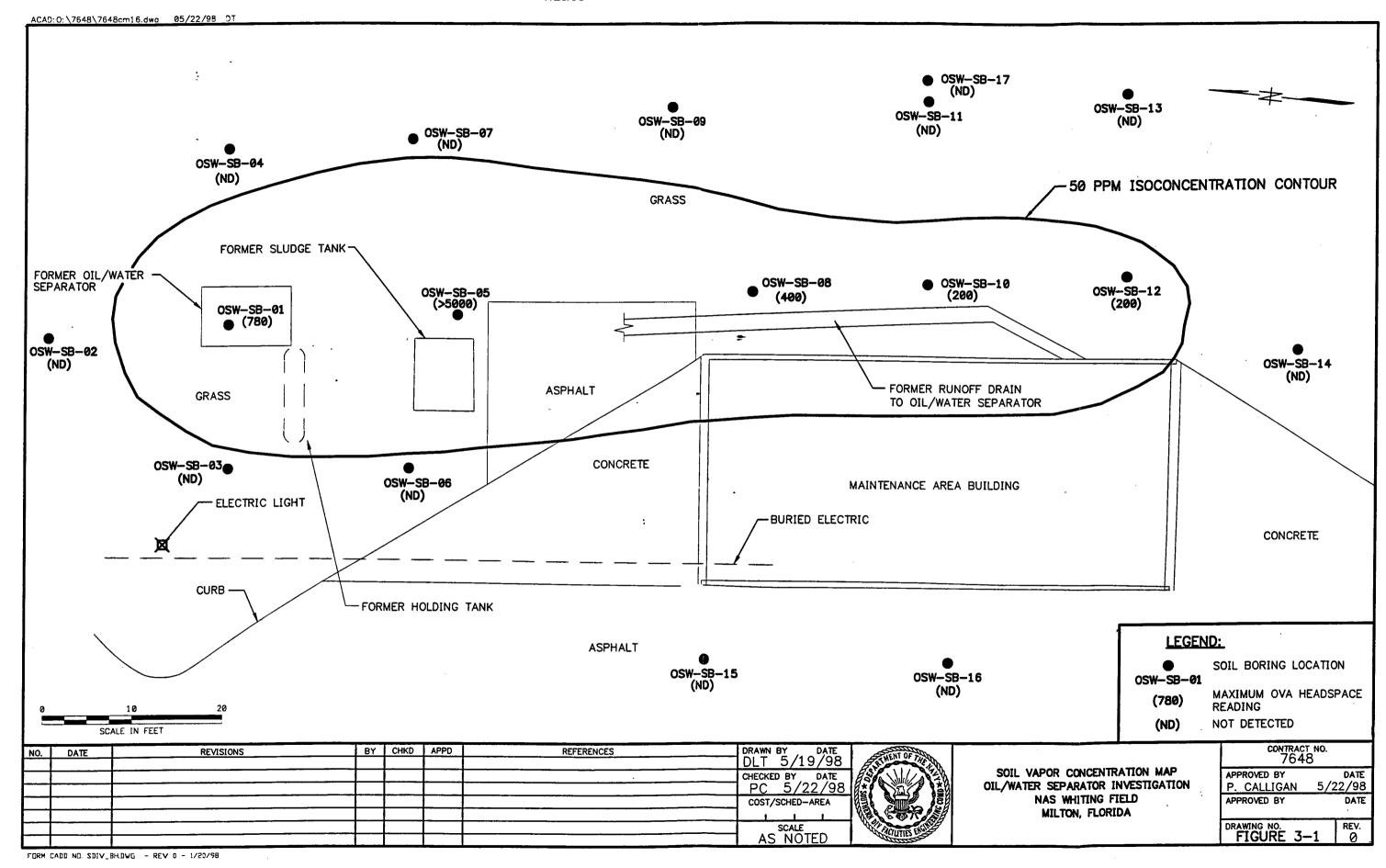
Below 25 feet the sediments consisted of very fine to fine grained sand ranging in color from yellowish orange to red. These sediments were noted as dry. Soil boring logs are included as Appendix E.

3.2 SOIL QUALITY

The vertical and horizontal extent of petroleum impacted soil in the vadose zone was assessed through soil vapor analysis performed during the direct-push investigation as described in Section 2.2.1 of this report. To confirm the presence of petroleum related compounds in the vadose zone soil, three soil samples were collected at each site for laboratory analysis as described in Section 2.5 of this report.

3.2.1 Oil Water Separator

During the DPT investigation at the closed oil/water separator, soils exhibiting an OVA response of greater than 50 ppm were encountered in soil borings OSW-SB-01 (780 ppm), OSW-SB-05 (>5000 ppm), OSW-SB-08 (400 ppm), OSW-SB-10 (200 ppm), and OSW-SB-12 (150 ppm). These data indicate that "excessively contaminated soil" is present in the vicinity of these soil borings. The "excessively contaminated soil" extends to a depth of approximately 22 feet in the


immediate vicinity of the former oil/water separator and sludge tank, (OSW-SB-01 and OSW-SB-05); and along the former runoff drain from the parking lot (OSW-SB-10). Elsewhere at the site the "excessively contaminated soil" is limited to the upper 10 to 15 feet of the vadose zone. Soil vapor screening results for the oil/water separator are presented in Table 2-1. Soil vapor concentrations are depicted on Figure 3-1.

The results of the laboratory analysis confirm that petroleum related compounds are present in the vadose zone soil at the site. The highest concentration of petroleum constituents was detected in the soil sample collected from OSW-SB-01. This sample had a TPH concentration of 3800 mg/kg and a naphthalene concentration of 3100 µg/kg. Concentrations above FDEP target levels were also reported for 1-methylnaphthalene and 2-methylnaphthalene. Laboratory analytical results for soil samples collected at the oil/water separator are summarized on Table 3-1.

3.2.2 Product Line Dispensing Facility

During the DPT investigation at the former product line dispensing facility, soils exhibiting an OVA response of greater than 50 ppm were encountered in soil borings PDF-SB-06 (310 ppm), PDF-SB-09 (>5000 ppm) and PDF-SB-12 (380 ppm). These data indicate that "excessively contaminated soil" is present in the vicinity of these soil borings. The "excessively contaminated soil" extends to a depth of approximately 19 feet along the southern and eastern edge of the former dispenser island pad, (PDF-SB-06 and PDF-SB-09). Elsewhere at the site the "excessively contaminated soil" is limited to the upper 10 to 15 feet of the vadose zone. Soil vapor screening results for the product line dispensing facility are presented in Table 2-2. Soil vapor concentrations are depicted on Figure 3-2.

The results of the laboratory analysis confirm that petroleum related compounds are present in the vadose zone soil at the site. The highest concentration of petroleum constituents was detected in the soil sample collected from PDF-SB-06. This sample ad a TPH concentration of 20 mg/kg and a total VOA concentration of 6.9 μ g/kg. Laboratory analytical results for soil samples collected at the product line dispensing facility are summarized on Table 3-1.

TABLE 3-1 SUMMARY OF SOIL QUALITY:

SELECTED PARAMETERS FROM THE KEROSENE ANALYTICAL GROUP

Naval Air Station Whiting Field, Milton, Florida FDEP ID No. 578516386

Sample Location	Date Sampled	Total VOA (mg/kg)	TPH (μg/kg)	Fluor (μg/kg)	Fluor- anth (µg/kg)	Naph (μg/kg)	Benzo(a) anth (μg/kg)	Benzo(a) pyrene (μg/kg)	Benzo(b) fluoran (μg/kg)	Benzo (k) fluor (μg/kg)	Benzo (ghi) (μg/kg)	Indeno (1,2,3,- cd) (μg/kg)	Chry- sene (µg/kg)	Pyrene (μg/kg)
OWS-SS-SB05-0506	11/19/97	8.2	540	150	ND	490	ND	ND	ND	ND	ND	ND	ND	ND
OWS-SS-SB05-506D	11/19/97	7.1 ^G	130	ND	ND	30 ³	ND	ND	ND	ND	ND	ND	ND	ND
OWS-SS-SB01-1112	11/19/97	7.4	3800	430 ^J	ND	3100	ND	ND	ND	ND	ND	ND	ND	ND
OWS-SS-SB09-0506	11/19/97	ND	5.7 ^J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PDF-SS-SB01-0708	11/20/97	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PDF-SS-SB06-1819	11/20/97	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PDF-SS-SB06-1011	11/20/97	6.9 ^J	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PPS-SS-SB01-0405	11/23/97	195.6 ^G	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PPS-SS-SB01-1011	11/23/97	0.76 ^J	2300	1100	3800	2100	390	360	230	220	120	110	370	1700
PPS-SS-SB02-1011	11/23/97	1.3 ^J	5.6 ^J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Total VOA

sum of benzene, toluene, ethylbenzene and xylenes concentrations

TPH

total petroluem hydrocarbons

Fluor

fluorene

Fluor-anth Napth fluoranthene naphthalene

Benzo (a) anth

benzo(a)anthracene benzo(b)fluoranthene

Benzo (b) fluoran Benzo (k) fluor

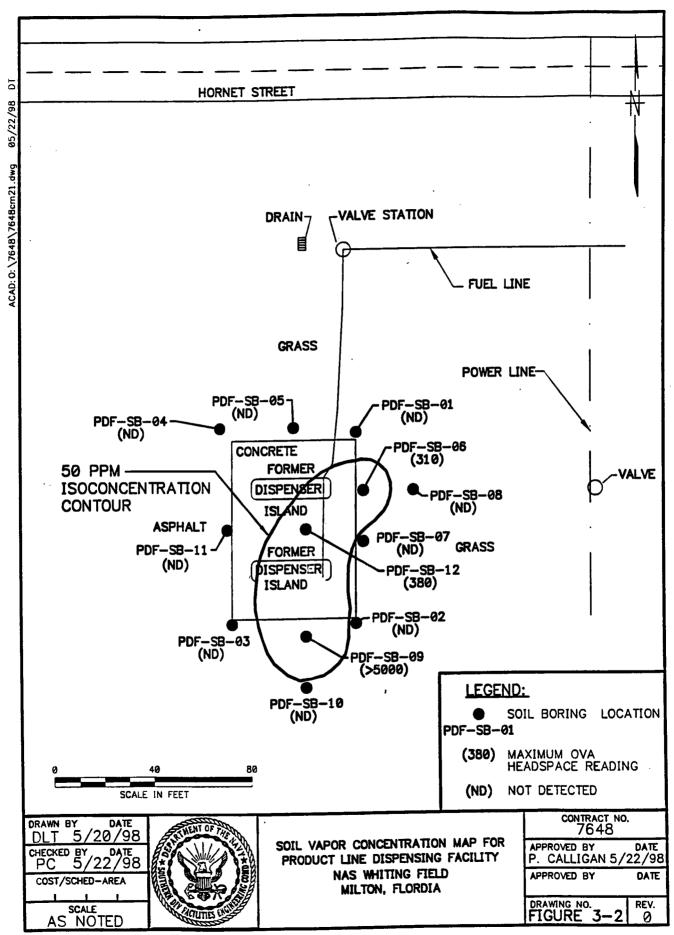
benzo(k)fluoranthene

Benzo (g,h,i)

benzo(g,h,i)perylene

Indeno (i,2,3-c,d)

indeno(1,2,3-cd)pyrene


ug/kg mg/kg concentrations reported in micrograms per kilogram concentrations reported in milligrams per kilogram

.

estimated result

G

elevated reporting limit due to matrix interference

3.2.3 Product Line Pump Station

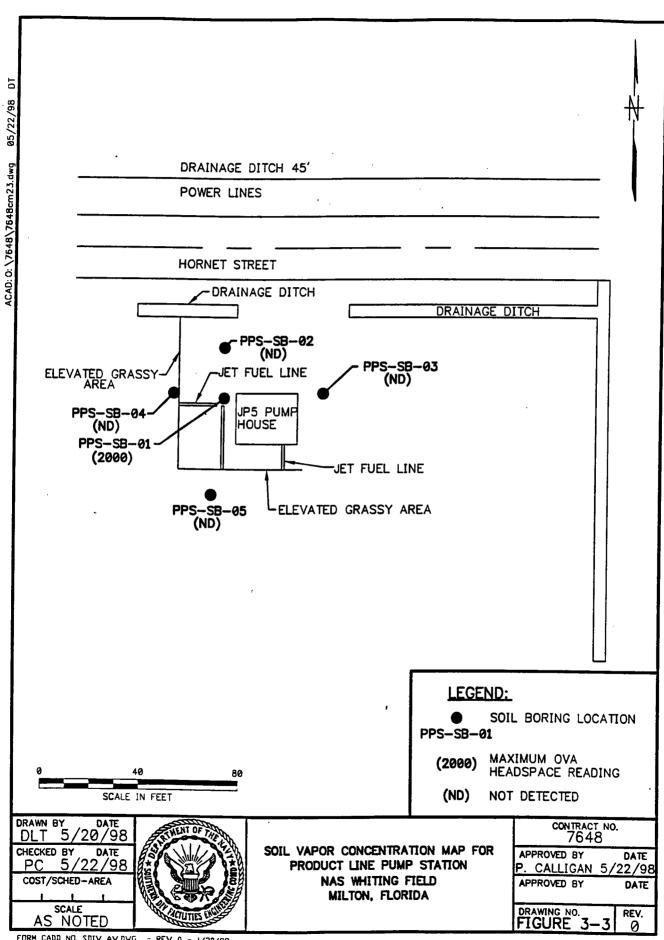
During the DPT investigation at the product line pump station, soils with an OVA response of greater than 50 ppm were encountered in soil boring PPS-SB-01 (2000 ppm). This data indicates that "excessively contaminated soil" is present in the vicinity of this soil boring. The "excessively contaminated soil" extends to a depth of approximately 13 feet in the immediate vicinity of boring PPS-SB-01. No other "excessively contaminated soil" was detected in the area of the pump station. Soil vapor screening results for the product line pump station are presented in Table 2-3. Soil vapor concentrations are depicted on Figure 3-3.

The results of the laboratory analysis confirm that petroleum related compounds are present in the vadose zone soil at the site. The highest concentrations of petroleum constituents were detected in the soil sample collected from PPS-SB-01. This sample had a TPH concentration of 2300 mg/kg and a naphthalene concentration of 2100 µg/kg. Concentrations above FDEP target levels were also reported for 1-methylnaphthalene and 2-methylnaphthalene. Laboratory analytical results for soil samples collected at the product line pump station are summarized on Table 3-1.

3.3 ESTIMATED MASS OF CONTAMINANTS IN SOIL

Net soil vapor readings in excess of 50 parts per million (ppm) were used to define "excessively contaminated soil" in accordance with Rule 62-770.200(2), FAC. For the oil/water separator and the product line dispensing facility the area of impacted soil was calculated by assuming a representative geometric shape (an ellipse), then calculating the area based on the equation:

Area = $\pi(rA)(rB)$


where:

r =the radius of the axis

A = the long axis of the ellipse

B = the short axis of the ellipse

For the product line pump station the area of impacted soil was calculated by assuming the representative geometric shape is a circle and using the formula for the area of a circle.

The volume of the soil was calculated using the equation:

where:

Area = calculated area in square feet

Depth = average vertical extent of contaminated soil in feet

The mass of contaminants in vadose zone soil was calculated using the following equation:

Mass = Volume ft³ x
$$\frac{1 \text{ yd}^3}{27 \text{ ft}^3}$$
 x $\frac{1.4 \text{ tons}}{1 \text{ yd}^3}$ x 1016 $\frac{\text{kg}}{\text{ton}}$ x $\frac{\text{mg}}{\text{kg}}$ TRPH x $\left(1.0 \text{ x } 10^{-6}\right) \frac{\text{kg}}{\text{mg}}$ x 2.204623 $\frac{\text{lb}}{\text{kg}}$

where:

TRPH = arithmetic mean of Total Recoverable Petroleum Hydrocarbon concentrations.

The estimated mass of contaminants for each site is:

Oil/Water Separator:

7,106 pounds

Product Line Dispensing Area:

9 pounds

Product Line Pump Station:

147 pounds

Soil volume and contaminant mass calculations for each site are provided in Appendix I. The estimated mass does not include contamination dissolved in soil pore water.

4.0 DISCUSSION

"Excessively contaminated" soil, as defined by Chapter 62-770.200 FAC, was detected within the vadose zone at all three sites investigated during this SA. The "excessively contaminated soil" was identified at depths of 7 to 22 feet bls in the area of the closed oil/water separator; 7 to 19 feet bls in the area of the former product line dispensing area; and 4 to 13 feet bls in the area of the product line pump station. These soils exhibited headspace readings of greater than 50 ppm. The presence of petroleum related compounds in the vadose zone was confirmed by laboratory analysis.

Reports from numerous investigations previously conducted at NAS Whiting Field (ABB Environmental Services, 1995, 1995, 1996, 1997), indicate that the water table typically occurs at a depth of approximately 90 feet bls. Based on the limited vertical extent of "excessively contaminated soil" (typically < 20 feet bls), the low permeability of the surficial sediments encountered during this investigation, and the deep water table, a groundwater investigation was not conducted as part of this SA. No free product was encountered during the SA.

5.0 CONCLUSIONS AND RECOMMENDATION

The results of the SA at the closed oil/water separator and the closed JP-5 product line suggest the following:

- The sources of the petroleum contamination are suspected to be the closed oil/water separator and sludge tank affiliated with former tank system #2993A; and the closed JP-5 product line associated with ASTs #2891 and 2892.
- No tank and line tightness testing has ever been performed on the tanks and lines associated with the oil/water separator or the JP-5 product line.
- Three public potable water supply wells were identified within a 0.5 mile radius of the site;
- The surficial aquifer qualifies as a G-II aquifer.
- A combined total of approximately 97,000 cubic feet of "excessively contaminated soil" has been identified at the three sites.
- "Excessively contaminated" soil was encountered at all three sites included in this investigation.
- The vertical extent of the "excessively contaminated soil" is typically limited to the upper 20 feet of the vadose zone.
- No significant water bearing zones were encountered during the course of this investigation.
- No free product was detected at the site during the course of this investigation.

Based on the presence of "excessively contaminated soil", an IRA soil excavation will be performed to remove the source. Subsequent to source removal B&R Environmental will submit a SAR Addendum documenting the results of the IRA.

6.0 REFERENCES

- U.S. Geological Survey, North Milton, FLA, Quadrangle, 1987, 7.5 Minute Series Topographic Map, scale 1:24,000.
- ABB Environmental Services, Inc., 1995, Remedial Investigation and Feasibility Study, Phase IIA Technical Memorandum No. 4, Hydrogeologic Assessment, Naval Air Station Whiting Field, Milton, Florida.
- ABB Environmental Services, Inc., 1997, Remedial Investigation and Feasibility Study, General Information Report, Naval Air Station Whiting Field, Milton, Florida.
- W. Grady Swan, Inc., 1995, Contamination Assessment Report for N.A.S. Whiting Field, Site 2993A, Milton, Florida.
- Jim Stidham & Associates, Inc., 1996, Product Line Closure Assessment Report, United States
 Naval Air Station Whiting Field, Milton, Florida.

APPENDIX A

SAR SUMMARY SHEET

SITE ASSESSMENT REPORT SUMMARY SHEET

Facility Name:	NAS Whiting Field, Oil/Wa	ater Separa	tor, JP-5 Pipeline	e Reimburser	ment Site:	
Location:	Milton, Florida			State Contr	act Site:	
EDI#:	1	FAC I.D.#	578516386	Other: N	on-Prog.	. 🗹
Date Reviewed:		Local (Government: _			···
(1) Source of Spill:	Unknown			Date of Spil	l: 21 Se	p 94
(2) Type of Product:	Gasoline Group	Gailons L	ost	Keroser	ne Group	Galions Lost
	☐ Leaded			☐ Kerosene	_	
	☐ Unleaded Regular			☐ Diesel	-	
	☐ Unleaded Premium		<u>_</u>	☐ JP-4 Jet F	uel _	
· .	☐ Gasohol			☑ Jet A Fuel	-	Unknown
	☐ Undetermined			☐ Unknown	_	•
(3) Description of IR performed during resolution	A: IRA soil excavation moval of oil/water spearator	,	☐ Free produ		34.45	(gals) (cubic yds)
	ciated with tank system 299	93.	☐ Soil	Incineration:		(cubic yds)
(4) Free Product still	present (yes/no) No	Maximum	apparent produc	t thickness:	1/A	_ (feet)
(5) Maximum Groun contamination le		OA: N/A	be	enzene: N/A MTBE: N/A	EDB:	N/A N/A
•	Light brown t 5 ft. dy clay, clay and clayey san Il extent of soils contaminati	d from ≈ 5 t	o 25 ft. bls. (ma	ined sand w/ som ximum depth drille yes		
Highest current	soil concentration (OVA:	>5000	ppm) or (EP/	A method 5030/80)20: 19	 95.6 ppb)
(8) Lower aquifer co	ntaminated? (yes/no)	-	Depth of vertic		No vertica	al extent well
(9) Date of last com	plete round of groundwater s	sampling:	N/A	Date of last so	il sampling:	19 Nov 97
(10) QAPP approve	d? (yes/no) Date: 6/	16/97				
(11) Direction (e.g. I	NNW) of surficial groundwate	er flow:	N/A	(Figur	on page)
(12) Average depth	to groundwater: 9	0	_ (ft)			
(13) Observed range	e of seasonal groundwater fl	uctuations:	N/A	(ft) (Based on w collected during investigation)		ata
(14) Estimated rate	of groundwater flow:	√A	(ft/day)			
(15) Hydraulic gradi	ent across site: N/A	(ft/ft)				
(16) Aquifer charact Hydraulic cond Storage coeffic Aquifer thickne Effective soil p Transmissivity	luctivity N/A cient N/A ess N/A orosity N/A	ft/c ft/f ft %	inits day t	Method		
(17) Other remarks:	No groundwater inves	tigation was	nerformed her:	use excessively o	contaminate	d soil is limited

(17) Other remarks: No groundwater investigation was performed because excessively contaminated soil is limited to the upper 20 feet of vadose zone and depth to groundwater is approximately 90 feet bls.

APPENDIX B

DISCHARGE NOTIFICATION FORMS

Florida Department of Environmental Regulation

Twin Towers Office Bidg. • 2600 Blair Stone Road • Tallahassee, Florida 52399-2400

DEA form s 17-781 900(1)	
fem Ide Discharge Report	ing form
Checono Data Decamber 10.	1990
DER Appressen No.	
	face in by DEPO

		Discharge Reporting Form
, l	Jse	this form to notify the Department of Environmental Regulation of.
	1.	Results of tank tightness testing that exceed allowable tolerances within ton days of receipt of test result.
•	2.	Petroleum discharges exceeding 25 gallons on pervious surfaces as described in Section 17-761.460 F.A.C. within one working day of discovery
}		Hazardous substance (CERCLA regulated), discharges exceeding applicable reportable quantities established in 17-761.460(2) F.A.C., within one working day of the discovery.
]	4.	Within one working day of discovery of suspected releases confirmed by: (a) released regulated substances or pollutants discovered in the surrounding area, (b) unusual and unexplained storage system operating conditions, (c) monitoring results from a leak detection method or from a tank closure assessment that indicate a release may have occurred, or (d) manual tank gauging results for tanks of 550 gallons or less, exceeding ten gallons per weekly test or five gallons averaged over four consecutive weekly tests.
]		Mail to the DER District Office in your area listed on the reverse side of this form
•	•	PLEASE PRINT OR TYPE
		Complete all applicable blanks
_		DER Facility ID Number: 578516386 2. Tank Number: 2993 A 3. Date: 9-21-94
	4.	Facility Name: NAS WHITING FIELD
		Facility Owner or Operator: Public Works OFFICER
Ì	`	Facility Address: 7151 USS WASP STREET MILTON, FL 32570-68
J		Telephone Number: (904) 623-7268 County Sauta Posa
1		Mailing Address:
3	5.	Date of receipt of test results or discovery: 9-21-94 month/day/year
	6.	Method of initial discovery. (circle one only) A. Liquid detector (automatic or manual) B. Vapor detector (automatic or manual) C. Tightness test (underground tanks only). D. Emptying and Inspection. E. Inventory control. F. Vapor or visible signs of a discharge in the vicinity G. Closure: H. Other: Product A defiled
		Friend author de la
1		What part of storage system has leaked? (circle all that apply) A Dispenser B. Pipe C. Fitting D. Tank E. Unknown
		Type of regulated substance discharged. (circle one)
	•	A. leaded gasoline D. vehicular diesel L. used/waste of B. unleaded gasoline F. aviation gas M. diesel C. gasohol G. jet fuel O. new/lube oil Z. other (write in name)
].	10	Cause of leak. (circle all that apply) A Unknown C. Loose connection E. Puncture G. Spill I. Other (specify) B. Split D. Corrosion F. Installation failure H. Overfill
	11.	. Type of financial responsibility. (circle one)

To the best of my knowledge and belief all Information submitted on this form is true, accurate, and complete.

A. Third party insurance provided by the state insurance contractor (C. Not applicable

B. Sell-insurance pursuant to Chapter 17-769.500 F.A.C.

2993 CLOSURE ASSESSIVENT Florida Department of Environmental Regulation

Twin Towers Office Bidg. • 2600 Blair Stone Road • Tallahassee, Florida 32399-2400

DER Form # 17-781 900(1)	
Form Tale Discharge Reporting Form	
Efective Data Decamber 10, 1990	
DER Appleston Ha	
(Fates on by C)	A)

Discharge Reporting Form

Use this form to notify the Department of Environmental Regulation of:

- 1. Results of tank lightness testing that exceed allowable tolerances within ten days of receipt of test result.
- 2. Fetroleum discharges exceeding 25 gallons on pervious surfaces as described in Section 17-781.460 F.A.C. within one working day of discovery.
- 3. Hazardous substance (CERCLA regulated), discharges exceeding applicable reportable quantities established in 17-761.460(2) F.A.C., within one working day of the discovery.
- 4. Within one working day of discovery of suspected releases confirmed by: (a) released regulated substances or pollutants discovered in the surrounding area, (b) unusual and unexplained storage system operating conditions, (c) monitoring results from a leak detection method or from a tank closure assessment that indicate a release may have occurred, or (d) manual tank gauging results for tanks of 550 pallons or less, exceeding ten gallons per weekly test or five gallons averaged over four consecutive weekly tests.

Mail to the DER District Office in your area fisted on the reverse side of this form

	Complete all applicable blanks
1.	DER Facility ID Number: 3. Date: 3. Date: 3.
4.	Facility Name: BLDG 2993
	Facility Owner or Operator: BULK FUELING
	Facility Address: WASP RD
	Telephone Number: (904) 623 - 7246 County: SANTA ROSA
	Mailing Address: ROICC 7183 Langley ST, NAS Whiting Field MILTON FL. 32:
5 .	Date of receipt of test results or discovery: 01/17/97 (Previously 07/75 by G. Swarv) month/day/year
6 .	Method of Initial discovery. (circle one only) A. Liquid delector (automatic or manual) B.) Vapor detector (automatic or manual) C. Tightness test (underground tanks only). D. Emptying and Inspection. E. Inventory control. F. Vapor or visible signs of a discharge in the vicinity (explain) H. Other: Control Passess minimum Assess minimum Asse
7.	Estimated number of gallons discharged: UNKNOWN Refort by 6. Swan 09 / 1995
8.	What part of storage system has leaked? (circle all that apply) A. Dispenser B. Pipe C. Fitting D. Tank (E) Unknown
	Type of regulated substance discharged. (circle one) A. leaded gasoline D. vehicular diesel L. used/waste oil V. hazardous substance includes pesticides, ammonia, chlorine and derivatives (write in name or Chemical Abstract Service CAS number) C. gasohol O. new/lube oil Z. other (write in name)
10.	Cause of leak. (circle all that apply) Output D. Corrosion D. Corrosi
11.	Type of financial responsibility. (circle one) A. Third party insurance provided by the state insurance contractor B. Self-insurance pursuant to Chapter 17-769.500 F.A.C. D. None
12.	To the best of my knowledge and belief all information submitted on this furm is true, accurate, and complete.
	_ LESLIE J NICHOLS

Printed Name of Owner, Operator or Authorized Representative

Stansture of Owner, Operator or Authorized Representative

Florida Department of Environmental Regulation

Twin Towers Office Bidg • 2600 Blair Stone Road • Taliahassee, Florida 32399-2400

DER Form # 17-701.RC3.5) Underpround Florage lient in Form 1de Removal Form for Certified C	staliation I pritiactors
Energye Date December 10, 1990	
DER Victorian No	DI fii

Underground Storage Tank Installation and Removal Form For Certified Contractors

Pollutant Storage System Specially Contractors as defined in Section 489.113, Florida Statutes (Certified contractors as defined in Section 17-761.200, I lorida Administrative Code) shall use this form to certify that the installation, replacement or removal of the storage tank system(s) located

loric It the	la Administrative Code) shall use this form to certify that the intermed Reference address listed below was performed in accordance with Department Reference	se Standards.	
Ger	neral Facility Information	•	
1.	DER Facility Identification No.:		
	2002 PULK FUELING	_ lelephone: (_
3.	Street Address (physical location): WASP STREET		-
4.	THE COURSE NAVY P. O. T. C. C	Telephone: ()	_
5 .	Owner Address: BLDG 1416 7183 LANGLEY ST NAS WHIT	TING FIELD	
6.	Khimpor of tarties: H. Histolico di tito titto	this time	
7.	Tank(s) Manufactured by: <u>UNKNOWN</u>		
В.	Date Work Initiated: <u>DECEMBER 10, 1996</u> 9. Date Work	Completed: DECEMBER 11. 1930	_
Ur	derground Pollutant Tank Installation Checklist	- Whe eppropriate box	
Ple	ase certily the completion of the following installation requirements by placing a	I Fadarel I must	
1.	The tanks and piping are corrosion resistant and approved for use by State at	ng receis Laws.	
	Excavation, backfill and compaction completed in accordance with NFPA (Na (American Petroleum Institute) 1615, PEI (Petroleum Equipment Institute) RP10		\Box
	Tanks and piping pretested and installed in accordance with NFPA 30(87), AF specifications.		
	Steel tanks and piping are cathodically protected in accordance with NFPA 3 1746, STI (Steel Tank Institute) R892-89 and the manufacturer's specifications.		
5	Tanks and inloing tested for tightness after installation in accordance with NFF	PA 30(87) and PEI/RP100-87.	
6	. Monitoring well(s) or other leak detection devices installed and tested in accordance and tested in accordance.	ordance with Section 17-761.640, Florida	
7	. Spill and overfill protection devices Installed in accordance with Section 17-76	51.500, F.A.C.	
8	 Secondary containment installed for tanks and piping as applicable in accord 	dance with Section 17-761.500, F.A.C.	L
P	ease Note: The numbers following the abbreviations (e.g. API 1615) are publica	ition or specification numbers issued by these institut	ions.
U	Inderground Pollutant Tank Removal Checklist	•	_
	Closure assessment performed in accordance with Section 17-761.800, F.A.C		ا _X
	2. Underground tank removed and disposed of as specified in API 1604 in acc	ordance with Section 17-761.800, F.A.C.	X

DER Form g 17-781.900(5) Underground Storage lank installation & Form 14s, Permanal Form for Certified Continuous
Efective Data, December 10, 1990
DER Appression No(Fined in by DER)

Certification

hereby certify and attest that I am familiar with the facility that Is registered with the Florida Department of Environmental Regulation; that to the est of my knowledge and belief, the tank installation, replacement or removal at this facility was conducted in accordance with Chapter 489 and ection 376303, Florida Statutes and Chapter 17-761, Florida Administrative Code (and its adopted reference sources from publications and standards of the National Fire Protection Association (NFPA), the American Petroleum Institute (API), the National Association of Corrosion Engineers (NACE), merican Society for Testing and Materials (ASTM); Petroleum Equipment Institute (PEI); Steel Tank Institute (STI); Underwriters Laboratory (UL); and that the operations on the checklist were performed accordingly.

LESLIE J. NICHOLS	PC-C055743
(Type or Print) Certified Pollutant Tank Contractor Name Pollutant Storage System Specialty Contractor License Number (PSSSC)	PSSSC Number
Len Cul Harlol	1-1497
Certified Tank Contractor Signature	Date
ROBERT CLARKE	1-14-97
(Type or Print) Field Supervisor Name	Date
Rober Clarke	1-14-95
Field Supervisor Signature	Date

ne owner or operator of the facility must register the tanks with the Department at least 10 days before the installation. The installer must submit is form no more than 30 days after the completion of installation to the Department of Environmental Regulation at the address printed at the top page one.

Florida Department of Environmental Regulation

Twin Towers Office Bidg. ● 2600 Blair Stone Road ● Tallahassee, Florida 32399-2400

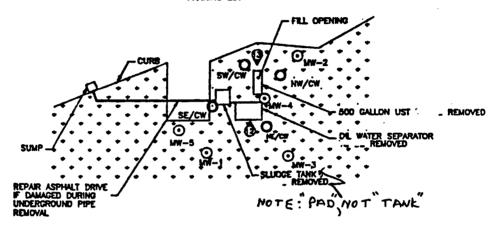
DER Form #	17-701 BAAU)
Form Ine_Ck	seure Assessment Form
	December 10, 1990
DER Appacatio	

Closure Assessment Form

owners of storage tank systems that are replacing, removing or closing in place storage tanks shall use this form to demonstrate that a storage storage tanks shall use this form to demonstrate that a storage storage assessment was performed in accordance with Rule 17-761 or 17-762, Florida Administrative Code. Eligible Early Detection Incenve (EDI) and Reimbursement Program sites do not have to perform a closure assessment.

Please Print or Type Complete All Applicable Blanks

1. Da	ale:	1-14-	97 nber: 3. County:
			DG 2993
4. Fa	acility Nar	ne: _ <u></u> B	ULK FUELING
			ROICC, NAS WHITING FIELD, 7183 LANGLEY ST MILTON FL
7. M	lailing Ad	ldress:!	9. Facility Operator: BULK FUELING
			nk(s): (Circle diff of both)
			Stored: <u>FUEL JP-5</u> (Strets and A Replaced (B Removed C. Closed in Place D: Upgraded (aboveground tanks only)
12			(Circle one) A. Replaced (B.)Removed C. Closed in Place D. Opgraded (abovegiound tains only) Closed: 14. Age of Tanks:UNKNOWN
13. N	Number o	or lanks (Closed:
			Facility Assessment Information
		** *	
Yes	No Ar	Nol pplicable	As a way of Regionalian Program (FPI IRP)?
	<u>X</u>		Is the facility participating in the Florida Petroleum Liability Insurance and Restoration Program (FPLIRP)? Program
<u> </u>	X.		Was a Discharge Reporting Form submitted to the Department? Where: Where:
[x]			3. Is the depth to ground water less than 20 feet?
\mathbf{x}			4. Are monitoring wells present around the storage system?
(-1			If yes, specify type: Water monitoring Vapor monitoring 5. Is there free product present in the monitoring wells or within the excavation?
			6. Were the petroleum hydrocarbon vapor levels in the soils greater than 500 parts per million to get million t
	<u></u>		Specify sample type: Vapor Monitoring wells Soil sample(s) 7. Were the petroleum hydrocarbon vapor levels in the soils greater than 50 parts per million for diesel/kerosene?
			- " I I I I I I I I I I I I I I I I I I
[x]			a the state of the ground water satisfies the ground water satisfies predict that the
ריו		<u></u>	 8. Were the analytical laboratory festilis of the ground supply laboratory data sheets) (See target levels on reverse side of this form and supply laboratory data sheets) 9. If a used oil storage system, did a visual inspection detect any discolored soil indicating a release?
}= <u>}</u>	X	K	10. Are any potable wells located within 1/4 of a mile radius of the facility?
ل_ا			11. Is there a surface water body within 1/4 mile radius of the site? If yes, indicate distance:
	•		


ate:_	1-14-97	C	LOSURE ASSESSMENT REVIEW CHECKLIST
scility	Name:	BLDG 2	993 Facility #
cility	Owner or	Operator:	BULK FUELING
cility	Address:_	WASP RI	Phone
ailing	Address:		
\$	No	N/A Unk	
-	X		Is this an EDI/PLIRP/ATRP site? (circle one)
ve th	e following	g forms be	en received?:
_		<u></u>	Storage Tank Registration/Notification Form
•			Discharge Notification/Reporting Form?
•		<u>.</u>	Closure Assessment Form?
•			Was an OVA used on site? FID/PID (circle one) (w/carbon filter?)
•			Were any OVA readings greater than 50 ppm or 500 ppm? (circle one that applies)
	<u>x</u>		Was there visual evidence of contamination/discharge? (i.e. soil staining, sheen, tank holes, etc.)
			Was excessively contaminated soil removed? If so, how much?(IRA information received)
			Were manifests for soil, water, sludge &/or tanks received?
			Is the depth to groundwater given? If so what
			Was groundwater analysis done? 601 602 610 418.1 (circle test(s) done)
			Were any results greater than SRLs? If so which?
			•
e the	following	been recei	ved?
			All lab analyses?
			All OVA readings?
			Lab quality assurance and control statement or #?
			Field quality assurance and control statement?
le ma	p indicatir	g location	
			storage tank system?
	<u>x</u>		dispensers?
			monitoring wells?
			buildings/roads?
	<u> </u>		storm drains?
			(sampling Foil) & groundwater)(chrole)

ate: 1-14-97

BUILDING 2993

NOT TO SCALE

LECEND CRASS PHOTO NUMBER/DIRECTION MONITORING WELL (MW) O COMPLIANCE WELLS(CW) (SE = SOUTHEAST) (SW = SOUTHWEST)
(NE = NORTHEAST)
(NW = NORTHWEST)

L. Rest Theory & O

PETROLEUM CONTAMINATION INITIAL REMEDIAL ACTION NOTIFICATION FORM

This notification provides written confirmation of initial remedial action (IRA) as required by Chapter 17-770.300(5) and (8), Florida Administrative Code. Notification must be within three working lays of initiation of an IRA. Upon completion of the IRA, an Initial Remedial Action Report should be submitted.

ſ.		ity Name: BUILDING 2993 ity Address: WHITINGFIELD NAVAL AIR STATION MILTON, FL
	DER F	of Initiation of IRA: 01/12./1997
ıı.	FREE	PRODUCT RECOVERY (Please provide brief responses.) NOW E
	λ. Β. C.	Type of Product Discharged: Estimated Quantity Lost: Product Thickness in Wells, Boreholes, Excavations, or Utility Conduits (Attach Site Plan indicating locations
	D.	and depths):
	Ε.	Type of Discharge During Product Recovery:
	F.	Type of Treatment and Expected Effluent Quality from Any Discharge:
	G.	Quantity and Disposal of Recovered Product:
		•

III. SOIL EXCAVATION

Λ. Estimated Volume of Contaminated Soil Excavated (Attach Site Plan indicating location of excavation(s) and soil borings): 34.4.5 cubic yards (in place) (See Closure Report For Sketch)

Florida Department of Environmental Regulation

в.	Type of Product in Soil:
c.	Method Used to Determine Excess Soil Contamination:
D.	Method of Treatment or Disposal of Contaminated Soil:
	LANDFILL
IV. RE	PORTING
	tification should be submitted to the appropriate Local, if any, or to:
F1	orida Department of Environmental Regulation
	reau of Waste Cleanup
26	00 Blair Stone Road
Ta	llahassee, Florida 32399-2400
Person	Constable From
Drue	hffiliation Signature, Date

PETROLEUM CONTAMINATION INITIAL REMEDIAL ACTION REPORT FORM

An Initial Remedial Action report, summarizing the initial remedial action (IRA), should be prepared to satisfy the requirements of Chapters 17-770.630(1)14; 17-773.500(1)(a)4; and 17-773.500(2)(a)4, Florida Administrative Code, (FAC). This form may be used for the IRA report. The report should be sent to the appropriate local program and:

Florida Department of Environmental Regulation Bureau of Waste Cleanup Engineering Support Section 2600 Blair Stone Road Tallahassee, FL 32399-2400

I.	FACILITY NAME: BUILDING #. 2993
	Facility Address: WASP.R.L., NAS.W. HITING FIELD NILTON FI
	DER Facility Number (if applicable):
	Date IRA Initiated: 12/26/1996 Date IRA Completed: 01/15/199
ıı.	FREE PROBUCT RECOVERY NONE
A.	Type(s) of Product Discharged:
в.	Quantity .
•	1. Estimated Gallons Lost:
-	2. Gallons Recovered:through (date)
	3. Attach Exhibit Indicating Amount of Product Recovered,
	Dates and Cumulative Totals.
C.	Attach a Scaled Site Plan, Indicating the Locations and Product Thickness in Wells,! Boreholes, Excavations, or Utility Conduits and Wells Utilized for Recovery of Free Product.
D.	Method of Product Recovery:
E.	Type of Discharge During Product Recovery:
	MAY 1992 . Florida Department of Environmental Regulation

F.	Type of Treatment, i.e., Oil/Water Separator:
G.	Attach Written Proof of Proper Disposal of Recovered Product:
ııı.	SOIL EXCAVATION
·	NOTE: Soil shall be defined as excessively contaminated using the procedure stated in Chapter 17-770.200(2), FAC. Representative soil sampling shall be performed as close to the time of excavation as possible, but at no time shall exceed three (3) months prior to the start of excavation. Stockpiled soils greater than thirty (30) days on site waiting for treatment and disposal, must be re-sampled immediately prior to disposal to assure soils are still excessively contaminated.
	If soil sampling data indicates that the amount of soil that is excessively contaminated exceeds 1500 cubic yards, treatment of all excessively contaminated soil at the site shall be addressed in a remedial action plan, and no soil IRA activities shall be performed except for the removal of soils in the immediate vicinity of the tanks.
	Only soil above the ambient water table at the time of excavation can be considered as excessively contaminated soil.
•	Unless the established weight per unit volume of 1.4 tons/cubic yard (as referenced in FAC Rule 17-775) is used for the excavated soil, the weight per unit volume must be determined by a field test (in which an accurately measured volume of soil is weighed) at the time of excavation.
λ.	Volume of Contaminated Soil Excavated in Cubic Yards:
NOTE	Attach written proof from the Department in the form of an Alternate Procedure Approval Order authorizing excavating over 1500 cubic yards if applicable. Authorization must be prior to the excavation of soils.
в.	Type(s) of Product in Soil: HYDROCARBON (JP5)
	MAY 1992 Florida Department of Environmental Regulation

ste Management Inc. - Floride istilat|Wa**sio** Barvice Center BC Nº 6653 **NON-HAZARDOUS MANIFEST** Dilver Name (Prin Truck Number _ US LETZOL neratora Bignatura Description of Profile Account Total **AUSTRITY** Waste Materials Number 174 18 11 1 Name of Authorized (Print) Blaneture PINK - LANDFILL WHITE - GENERATOR YELLOW - LANDPILL GOLD - TRANSPORTER FOX: -COPY .N- 904- 623-7515

PHONE NO. : 9549730310

27904 283 7100

1911 - 10350

31/25/91

13:54

Jan. 20 1997 02:37FM F2

UH : MH - 1MSC PHONE NO. : 9549730310 Jan. 20 1997 02:37FH P3 01/20/91 13:54 **₽**904 263 7100 ייטעש Waste Management hys. • Florkia Industrial Whate Service Center 2900 N.W. 48788894 Pompano Beach, FL 33378 NON- HAZARDOUS MANIFEST SC Nº 6654 イけんしょせん Driver Name (Print) Truck Number I hereby acknowledge that the above-described metarists were received from the generator etts were transported without incident to the destination listed below. Dilver Signature Generatory Stansture Marka Description of Profile Account TaleL Warte Materiale Number Quantity Fhone Humber 1904 I hereby acknowledge resolpt of the above-described materials. Name of Authorized (Print) Signature

YELLOW-LAHOPILL

11-904-623-7515

PINK - LANDFILL

WHIE-GENERATOR

All the second s

GOLD - TRANSPORTER

APPENDIX D

CLOSURE REPORT FOR PRODUCT LINE

547 N. MONROE ST., SUITE 201 - POST OFFICE BOX 3547 - TALLAHASSEE. FLORIDA 32303-3547 TELEPHONE: 904/222-3975 FAX: 904/681-0560

PRODUCT LINE CLOSURE ASSESSMENT REPORT

UNITED STATES NAVAL AIR STATION WHITING FIELD MILTON, FLORIDA 32570

FDEP FACILITY LD. #578516386

APRIL 12, 1996

PREPARED FOR:

SANTA ROSA COUNTY STORAGE TANK PROGRAM ESCAMBIA COUNTY PUBLIC HEALTH UNIT 1190 WEST LEONARD STREET, SUITE 2 PENSACOLA, FLORIDA 32501

PREPARED BY:

JIM STIDHAM & ASSOCIATES, INC.

CLOSURE ASSESSMENT REPORT UNITED STATES NAVAL AIR STATION WHITING FIELD FACILITY ID # 578516386

INTRODUCTION

On March 27, 1996 Jim Stidham & Associates, Inc. (JSA) began performance of closure assessment activities on a system of product lines that were once affiliated with two above ground storage tanks (ASTs) that are identified as Tank #2891 and Tank #2892. This AST facility and the associated product line system are located on the south side of Hornet Street, United States Naval Air Station, Whiting Field, Milton, Florida 32570 (Figure 1). The product line system extends from the northwest area of the AST facility that contains Tank #2891 and Tank #2892 to a pump station facility located on Hornet Street. The product line system then proceeds in a southwesterly direction along Hornet Street under Saratoga Street to a dispensing facility. The product line system was taken out of service and closed in place by Environmental Recovery, Inc. (ERI) and Minority Speciality Contractors Inc. (MSC).

JSA arrived on the site on March 27, 1996 and met with Eric Taylor of Minority Speciality Contractors to discuss the product line closure assessment at the above referenced facility. The product lines are constructed of metal and are located approximately three feet below land surfaces (BLS) in most areas. The product line system included in this closure assessment consists of two separate lines from the AST facility to the pump station building located along Hornet Street with a single 10-inch product line extending from this pump station facility to a product dispensing area. There is also a 4-inch product line connecting the two ASTs to a former dispensing area approximately 110 feet to the northeast of the AST facility. Figure 2 displays the product lines included in this closure assessment. Each of the two product lines that extend from the ASTs to the pump station line connects to both ASTs and contain valve stations at various locations between the ASTs and the pump station facility. One 8-inch product line services the northeast side of the AST facility and travels in a northwesterly direction to the southwest side of the pump station facility. A second 10-inch product line services the southwest side of the AST facility and extends from the AST in a northwesterly direction and connects to the southeast portion of the pump station facility. A 10inch line extends in a southwesterly direction along Hornet Street from the pump station to a former dispensing facility located southwest of the junction of Hornet and Enterprise Streets. The following

information summarizes the activities that occurred at this facility as a part of this Product Line Closure Assessment Report.

SITE HISTORY

There is a total of four product line systems associated with the AST system at the above mentioned facility. The product lines at this facility were taken out of service through in-place closure by Environmental Recovery, Inc. (ERI) from February 26, 1996 to February 29, 1996. The product lines involved in this product line closure assessment were affiliated with two 231,000 gallon ASTs that contain Jet Petroleum #5 (JP-5).

PRODUCT LINE ASSESSMENT (PLCA)

Beginning on March 26, 1995 and concluding on March 29, 1996, JSA performed the product line closure assessment for these four product line systems that were affiliated with the two ASTs (Tank #2891 and Tank #2892). The two ASTs at this facility remain in service (Figure 2).

Soil samples were collected for organic volatile analysis (OVA) at the beginning and the end of each product line and also on a 100-foot interval basis along each product line. Additional soil samples were collected in the areas where product line direction changes occur and also in the areas of valve stations located along the product lines associated with this closure assessment. Soil samples were also collected in the vicinity of both the former rail loading area and the former dispensing area. For the purposes of this product line closure assessment report, the four product lines in question will be identified as System 1, System 2, System 3, and System 4. System 1 is identified as the product line extending from the dispensing area to the pump station facility. System 2 is identified as the product line that extends from the southeast side of the pump station facility to the southwest side of the AST facility. The product line that extends from the southwest area of the pump station facility to the northeast portion of the AST facility is identified as System 3. System 4 consists of the 4-inch product line that extends from the northeast area of the AST facility to a former rail loading area located approximately 110 feet to the northeast.

System 1 consists of approximately 1315 feet of 10 inch metal product lines. This product line maintains a consistent below gradient depth of approximately 3 feet except for an aboveground junction located near Soil Boring #13 (SB-13) and an exposed portion near the pump station facility.

A total of 17 soil borings was installed along this product line, beginning with SB-1 located near the dispensing facility and ending with SB-17 near the pump station facility. SB-2 was installed near a valve station that is located on a 45-degree direction change in the product line. All other soil borings are located on a 100-foot interval basis (or less depending upon obstructions such as roads and parking lots). Elevated OVA values were encountered in soil collected from SB-1, SB-12, and SB-17. Soil samples collected from the remaining soil borings indicated OVA readings below detection limits. Two additional soil borings were also installed around the pump station facility. These soil borings were installed to a depth of 7 feet BLS and revealed OVA readings below detection limits. Figure 3 displays the location of the soil borings along the product line located within System 1.

The second system, System 2, consists of approximately 605 feet of 10 inch metal product lines. With the exception of an exposed area near the pump station facility, this product line is approximately 3 feet below land surface (BLS) throughout its extent. Soil borings SB-18 through SB-24 and SB-36 and SB-37 were installed along the product line on a 100-foot interval basis to include product line direction changes and valve stations. SB-18 was installed on one end of the product line near the pump station facility and SB-37 was installed at the opposite end near the AST area. All soil borings, with the exception of SB-18, were installed to a depth of 7 feet BLS for collection of soil for OVA analysis. SB-18 was installed to a depth of only four feet BLS since the product line is exposed above land surface in this area. All soil samples collected from these soil borings revealed OVA values below detection limits. Figure 4 displays the location of these soil borings along the product line designated as System 2.

System 3 contains approximately 795 feet of 8 inch metal product lines. The majority of this product line is approximately 3 feet BLS except for the portion of the product line located within the AST facility. The depth of the product line within the AST facility is approximately 8 feet BLS. A total of eleven soil borings were installed along this product line system, beginning with SB-25 near the pump station facility and ending with SB-35 in the area of the AST facility. In the area where this product line is located approximately 3 feet BLS, soil borings SB-25 through SB-32 were installed to a depth of 7 feet BLS. Within the area of the AST facility where this product line is located approximately 8 feet BLS, soil borings SB-33, SB-34, and SB-35 were installed to a depth of 12 feet BLS. These three soil borings were installed in the immediate vicinity of valve stations. All of the soil borings along System 3 were installed on a 100-foot interval basis and included all product line direction changes and valve stations. All soil samples collected for OVA analysis along this product, line contained values below detection limits. The locations of these soil borings are displayed in Figure 5.

The product line contained within System 4 consists of metal 4 inch piping that extends from the northeast portion of the AST facility to a former rail loading area located approximately 110 feet to the northeast side of the AST facility. At one time, this AST facility was supplied with JP-5 products by way of rail transport. The product line designated as System 4 once served as an off loading area for the JP-5 fuel transported to the AST facility by rail. This system contains six off loading junctions, all of which combine into one 4-inch product line that was once connected to the AST facility. A total of seven soil borings (SB-39 through SB-45) were installed in the rail loading area of this product line with one soil boring adjacent to each rail loading junction and one soil boring in the area where this product line changes direction to travel to the AST facility. An additional soil boring (SB-38) was also placed between the rail loading area and the AST facility. Soil samples collected for OVA analysis from SB-39 through SB-45 revealed excessive levels of petroleum contamination from soil collected at depths of three and four feet BLS. Soil collected for analysis from SB-38 revealed excessive levels of petroleum contamination from soil collected at a depth of 7 feet BLS. Figure 6 displays the product line designated as System 4 and the soil borings installed along this product line.

Additional soil borings were also placed in the area of the former dispensing facility. A total of six soil borings were installed around this former dispensing area, including SB-1 which was installed in the area where the product line joins the dispensing area. Soil samples taken for OVA analysis from SB-46 through SB-50 contained values below detection limits. However, as previously mentioned, SB-1 contained excessive levels of petroleum contamination at a depth of 7 feet BLS. The locations for the soil borings around this dispensing facility are displayed in Figure 7.

The threshold for excessively contaminated soil was set at 50 parts per million (ppm) following Chapter 62-770.200(2) for mixed product group contamination sources. The Closure Assessment Form is included in Appendix A.

The soil collected for analysis was scanned with a Foxboro Century 128, organic vapor analyzer (OVA). This instrument is a flame ionization detector (FID) used to conduct field analysis of soil samples. Standard manufacturers operating procedures were followed and all field calibrations were made according to manufacturer's recommendations.

The soil samples were sealed in half-filled 16 ounce glass jars and the OVA readings were taken in the headspace above the soil as recommended by FDEP's <u>Guidelines for Assessments and Remediation of Petroleum Contaminated Soils</u> and in accordance with Florida Administrative Code

(FAC) Chapter 62-770.200(2). Duplicate soil samples were collected from each test site so that samples could be analyzed for total biogenic content using a carbon filter attachment. Total Volatile Hydrocarbons (TVH) were then determined by subtracting the biogenic reading from the OVA reading.

SUMMARY

During Product Line Closure Assessment activities of the product line systems affiliated with tank #2891 and tank #2892, JSA installed fifty-two soil borings in the soil located around the product lines involved in this product line closure assessment. Soil borings were installed along the product lines on a 100-foot interval basis. Soil borings were also installed in the areas of product line direction changes and also in the areas of valve junction stations and product line termination areas. While the majority of the soil collected for OVA analysis revealed values below detection limits, soil samples collected from SB-1, SB-12, SB-17, SB-38, SB-39, SB-40, SB-41, SB-42, SB-43, SB-44, and SB-45 revealed excessive levels of petroleum contamination (>50 ppm). A Discharge Reporting Form has been prepared for submittal and is included in Appendix B.

TABLES

WHITING FIELD

UNITED STATES NAVAL AIR STATION MILTON, FLORIDA

FDEP FACILITY ID #: 578516386

TABLE 1

SB LOCATION	DEPTH (ft	OVA COOP	n) BlO (ppr	a li Tavida da	
SB - 1	1	<1	<1	<1	
SB - 1	3	<1	<1	<1	TAN SAND
SB - 1	5	<1	<1	 	TAN SAND
SB - 1	7	640	29	611	TAN SAND
SB - 2	1	<1	<1		TAN SANDY CLAY
SB - 2	3	<1	<1	<1	TAN SAND
SB - 2	5	<1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<1	TAN SAND
SB - 2	7	<1	<1	<1	TAN SAND
SB - 3	1	<1	<1	<1	TAN & BROWN SANDY CLAY
SB - 3	3	<1		<1	TAN SAND
SB - 3	5	<1	<1	<1	TAN SAND
SB - 3	7		<1	<1	TAN SAND
SB - 4	1	<1	<1	<1	TAN & ORANGE SANDY CLA
SB - 4	3	<1	<1	<1	TAN SAND
SB - 4	5	<1	<1	<1	TAN SAND
SB - 4	7	<1	<1	<1	TAN SAND
SB - 5	1	<1	<1	<1	TAN SAND
SB - 5	3	<1	<1	<1	DARK SAND
SB - 5	5	<1	<1	<1	TAN SAND
SB - 5	7	<1	<1	<1	TAN SAND
SB - 6	1	<1	<1	<1	TAN SANDY CLAY
SB - 6		<1	<1	<1	TAN SAND
SB - 6	5	<1	<1<1	<1	TAN SAND
SB - 6	7	<1	<1	<1	BROWN CLAYEY SAND
SB - 7		<1	<1	<1	BROWN SANDY CLAY
SB - 7	1	<1	<1	<1	TAN SAND
SB - 7	3	<1	<1	<1	TAN SAND
SB - 7	5	<1	<1	<1	TAN & BROWN CLAYEY SAND
SB - 8	7	<1	<1	<1	TAN & BROWN SANDY CLAY
SB - 8	1	<1	<1	<1	TAN SAND
SB - 8	3	<1	<1	<1	TAN SAND
SB - 8	5	<1	<1	<1	TAN & BROWN CLAYEY SAND
SB - 9	7	<1	<1	<1	TAN & BROWN SANDY CLAY
SB - 9	1	<1	<1	<1	TAN SAND
SB - 9	3	<1	<1	<1	TAN SAND
	5	<1	<1	<1	BROWN & ORANGE SAND
SB - 9	7	<1	<1	<1	TAN & ORANGE SANDY CLAY
SB - 10	1	<1	<1	<1	TAN SAND
SB - 10	3	<1	<1	<1	TAN SAND
SB - 10	5	<1	<1	<1	
SB - 10	7	<1	<1	<1	TAN & BROWN CLAYEY SAND TAN & BROWN SANDY CLAY

UNITED STATES NAVAL AIR STATION MILTON, FLORIDA

FDEP FACILITY ID #: 578516386

TABLE 1 (CONT.)

SB LOCATION	DEPTH (ft)	OVA (ppm)	BIO (ppm)	TVH (ppm	SOIL DESCRIPTION
SB - 11	1	<1	<1	<1	TAN SAND
SB - 11	3	- <1	<1	<1	TAN SAND
SB - 11	5	<1	<1	<1	BROWN SAND
SB - 11	7	<1	<1	<1	TAN & BROWN SANDY CLAY
SB - 12	1	<1	<1	<1	TAN SAND
SB - 12	3	<1	<1	<1	TAN SAND
SB - 12	5	250	2	248	TAN & GREY SAND
SB - 12	7	440	4.4	435.6	TAN & GREY SAND
SB - 13	1	<1	<1	<1	TAN SAND
SB - 13	3	<1	<1	<1	TAN SAND
SB - 13	5	<1	<1	<1	TAN SAND
SB - 13	7	<1	<1	<1	TAN SANDY CLAY
SB - 14	1	<1	<1	<1	TAN SAND
SB - 14	3	<1	<1	<1	TAN SANDY CLAY
SB - 14	5	<1	<1	<1	TAN SAND
SB - 14	7	<1	<1	<1	TAN SANDY CLAY
SB - 15	1	<1	<1	<1	DARK SAND
SB - 15	3	<1	<1	<1	TAN SAND
SB - 15	5	<1	<1	<1	TAN SANDY CLAY
SB - 15	7	<1	<1	<1	TAN SANDY CLAY
SB - 16	1	<1	<1	<1	REDISH SAND
SB - 16	3	<1	<1	<1	TAN SANDY CLAY
SB - 16	5	<1	<1		TAN SANDY CLAY
SB - 16	7	<1	<1		TAN SANDY CLAY
SB - 17	1	<1	<1		TAN SAND
SB - 17	3	>1000	<1		GREY & TAN SANDY CLAY
SB - 17	4	>1000	<1		GREY & TAN SANDY CLAY
SB - 18	1	<1	<1		TAN SAND
SB - 18	3	<1	<1		TAN & BROWN CLAYEY SAND
SB - 18	4	1.2	<1	1.2	BROWN SANDY CLAY
SB - 19	1	<1	<1		TAN SAND
SB - 19	3	<1	<1		TAN SAND
SB - 19	5	<1	<1		GREY & WHITE CLAYEY SAND
SB - 19	7	<1	<1		GREY & WHITE CLAYEY SAND
SB - 20	1	<1	<1		TAN SAND
SB - 20	3	<1	<1		TAN SAND
SB - 20	5	<1	<1		TAN & BROWN CLAYEY SAND
SB - 20	7	<1	<1		TAN & BROWN SANDY CLAY
SB - 21	1	<1	<1		TAN SAND
SB - 21	3	<1	<1		TAN SAND

OVA - Organic Vapor Analyzer
- Biogenic Reading
- Total Volatile Hydrocarbons

PPM - Parts Per Million

SB - Soil Boring

UNITED STATES NAVAL AIR STATION MILTON, FLORIDA FDEP FACILITY ID #: 578516386

TABLE 1 (CONT.)

SBLOCATION	DEPTH (ft	OVA (ppr	n) BlO (ppm	1111111	10.1
SB - 21	5	<1	<1	<1	
SB - 21	7	<1	<1	 	BROWN CLAYEY SAND
SB - 22	1	N/A	N/A	N/A	BROWN SANDY CLAY
SB - 22	3	<1	<1	<1 <1	TANGANG
SB - 22	5	<1	<1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TAN SAND
SB - 22	7	<1	<1	<1	TAN & BROWN CLAYEY SA
SB - 23	1	<1	<1	<1	TAN & BROWN SANDY CL
SB - 23	3	<1	<1	<1	TAN SAND
SB - 23	5	<1	<1		TAN SAND
SB - 23	7	<1	<1	<1	BROWN CLAYEY SAND
SB - 24	1	<1	<1	<1	BROWN SANDY CLAY
SB - 24	3	<1	<1	<1	TAN SAND
SB - 24	5	<1	<1	<1	TAN SAND
SB - 24	7	<1	<1	<1	BROWN CLAYEY SAND
SB - 25	1	<1	<1	<1	BROWN SANDY CLAY
SB - 25	3	<1		<1	ITAN SAND
SB - 25	5	<1	<1	<1	TAN SAND
SB - 25	7		<1	<1	BROWN CLAYEY SAND
SB - 26	1	<1	<1	<1	BROWN SANDY CLAY
SB - 26	3	<1	<1	<1	TAN SAND
SB - 26	5	<1	<1	<1	TAN SAND
SB - 26	7	<1	<1	<1	TAN SANDY CLAY
SB - 27	1	<1	<1	<1	TAN SANDY CLAY
SB - 27	3	<1	<1	<1	DARK SAND
SB - 27	5	<1	<1	<1	TAN SAND
SB - 27	7	<1	<1	<1	TAN SANDY CLAY
SB - 28		<1	<1	<1	TAN SANDY CLAY
SB - 28	1	<1	<1	<1	TAN SAND
SB - 28	3	<1	<1	<1	TAN SAND
SB - 28	5	<1	<1	<1	TAN SANDY CLAY
SB - 29	7	<1	<1	<1	TAN SANDY CLAY
SB - 29	1	<1	<1	<1	TAN SAND
SB - 29	3 ·	<1	<1	<1	TAN SAND
SB - 29	5	<1	<1	<1	TAN SANDY CLAY
SB - 30	7	<1	<1	<1	TAN SANDY CLAY
SB - 30	1	<1	<1		TAN SANDT CLAY
SB - 30	3	<1	<1		TAN SAND
SB - 30	5	<1	<1		
	7	<1	<1		RED SANDY CLAY
SB - 31	1	<1	<1		RED SANDY CLAY TAN SAND
SB - 31	3	<1.	<1		TAN SAND

OVA - Organic Vapor Analyzer

- Biogenic Reading

TVH - Total Volatile Hydrocarbons

PPM - Parts Per Million

SB - Soil Boring

UNITED STATES NAVAL AIR STATION MILTON, FLORIDA FDEP FACILITY ID #: 578516386

TABLE 1 (CONT.)

SB LOCATION	DEPTH (ft)	OVA (ppm)	BIO (ppm)	TVH (ppm	SOIL DESCRIPTION
SB - 31	5	<1	<1	<1	RED SANDY CLAY
SB - 31	7	- <1	<1	<1	RED SANDY CLAY
SB - 32	1	<1	<1	<1	DARK SAND
SB - 32	3	<1	<1	<1	TAN SAND
SB - 32	5	<1	<1	<1	TAN SANDY CLAY
SB - 32	7	<1 ,	<1	<1	TAN SANDY CLAY
SB - 33	8	<1	<1	<1	GRAVEL & SAND FILL
SB - 33	10	<1	<1	<1	BROWN SANDY CLAY
SB - 33	12	<1	<1	<1	BROWN SANDY CLAY
SB - 34	8	<1	<1	<1	GRAVEL & SAND FILL
SB - 34	10	<1	<1	<1	BROWN SANDY CLAY
SB - 34	12	<1	<1	<1	BROWN SANDY CLAY
SB - 34	14	<1	<1	<1	BROWN SANDY CLAY
SB - 34	16	<1	<1	<1	BROWN SANDY CLAY
SB - 34	18	<1	<1	<1	BROWN SANDY CLAY
SB - 34	20	<1	<1	<1	BROWN SANDY CLAY (DAMP)
SB - 35	8	<1	<1	<1	GRAVEL & SAND FILL
SB - 35	10	<1	<1	<1	BROWN SANDY CLAY
SB - 35	12	<1	<1	<1	BROWN SANDY CLAY
	1	<1	<1	<1	TAN SAND
	3	<1	<1	<1	TAN SAND
	5	<1	<1	<1	BROWN CLAYEY SAND
	7	<1	<1	<1	BROWN SANDY CLAY
	1	<1	<1	<1	BROWN SAND
SB - 37	3	<1	<1	<1	BROWN SAND
SB - 37	5	<1	<1	<1	RED CLAYEY SAND
SB - 37	7	′ <1	<1	<1	RED SANDY CLAY
SB - 38	1	<1	<1	<1	TAN SAND
	3	<1	<1	<1	TAN SAND
	5	<1	<1	<1	TAN SANDY CLAY
SB - 38	7	300	120	180	DARK SANDY CLAY
	1	<1	<1	<1	TAN SAND
	3	190	8.6	181.4	DARK SANDY CLAY
	4	280	15	265	DARK SANDY CLAY
	1	<1	<1	<1	TAN SANDY CLAY
	3	<1	<1	<1	TAN SANDY CLAY
	4	670	32	638	GREY & TAN SANDY CLAY
	1	<1	<1	<1	TAN SAND
	3	68	<1	<1	GREY & TAN SANDY CLAY
	4	>1000	62	>938	GREY & TAN SANDY CLAY

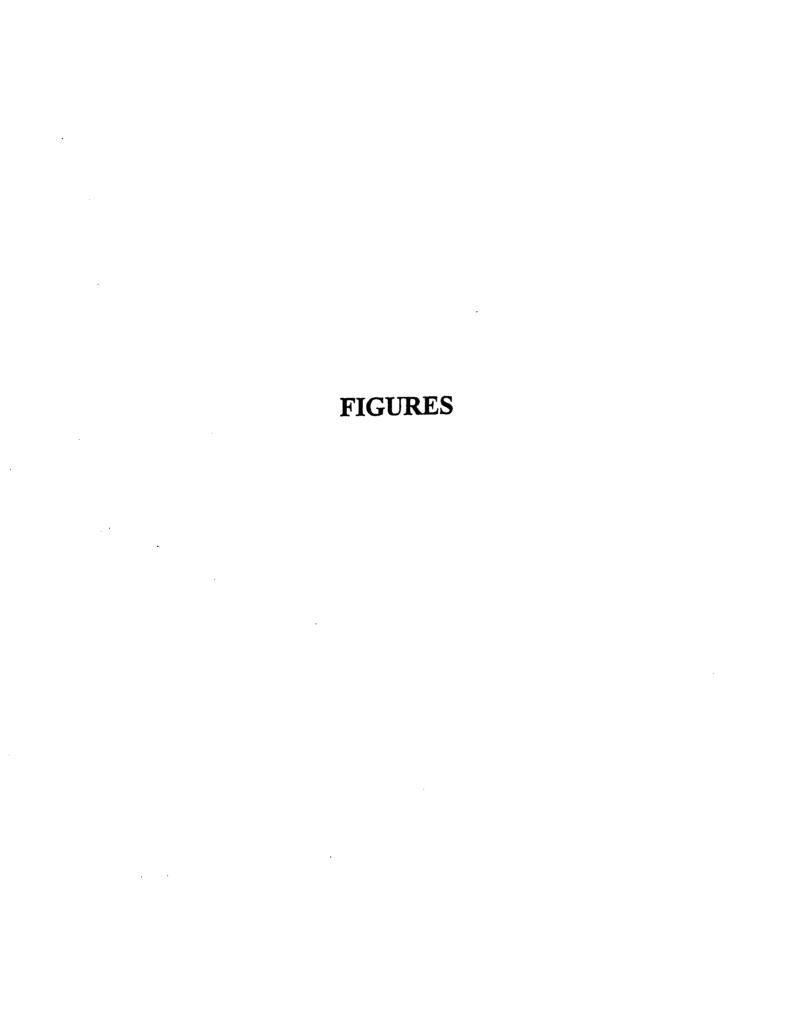
OVA - Organic Vapor Analyzer
BIO - Biogenic Reading
TVH - Total Volatile Hydrocarbons

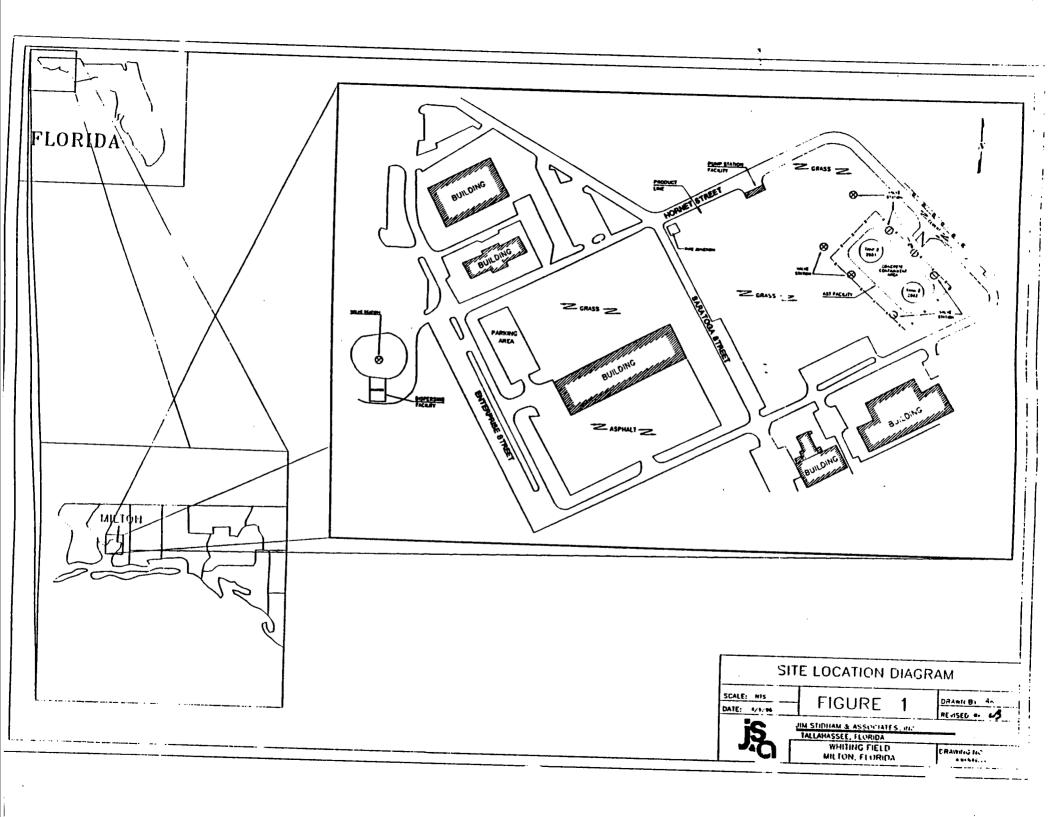
PPM - Parts Per Million

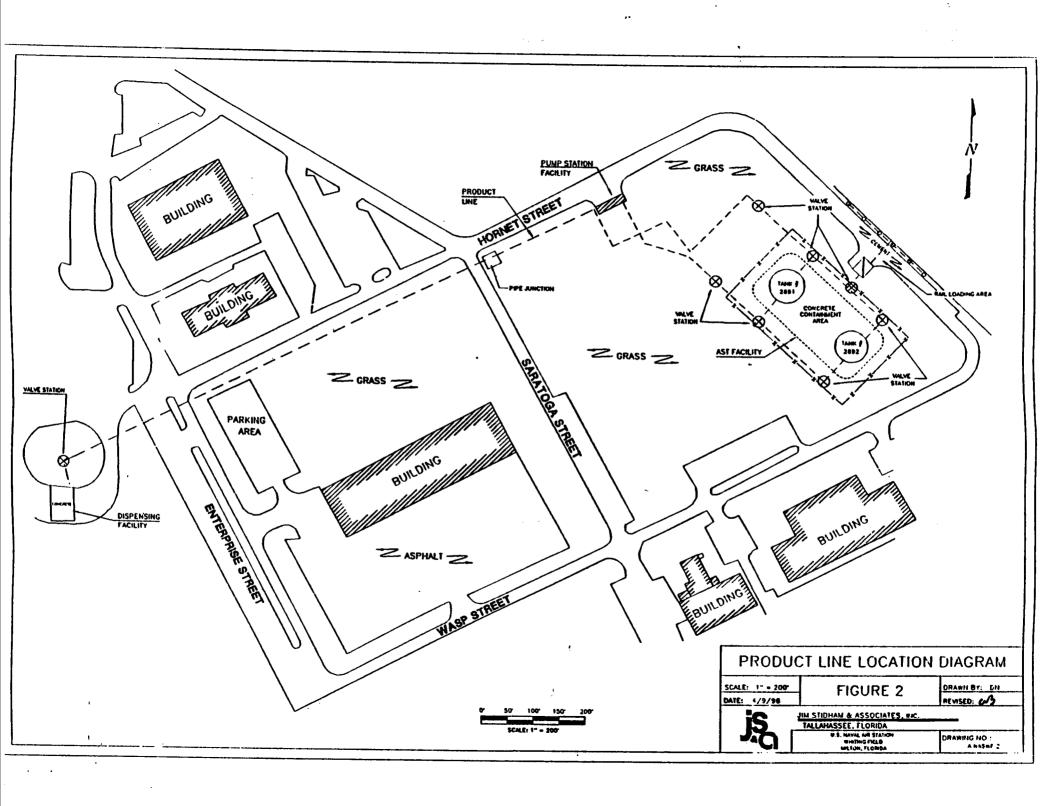
SB - Soil Boring

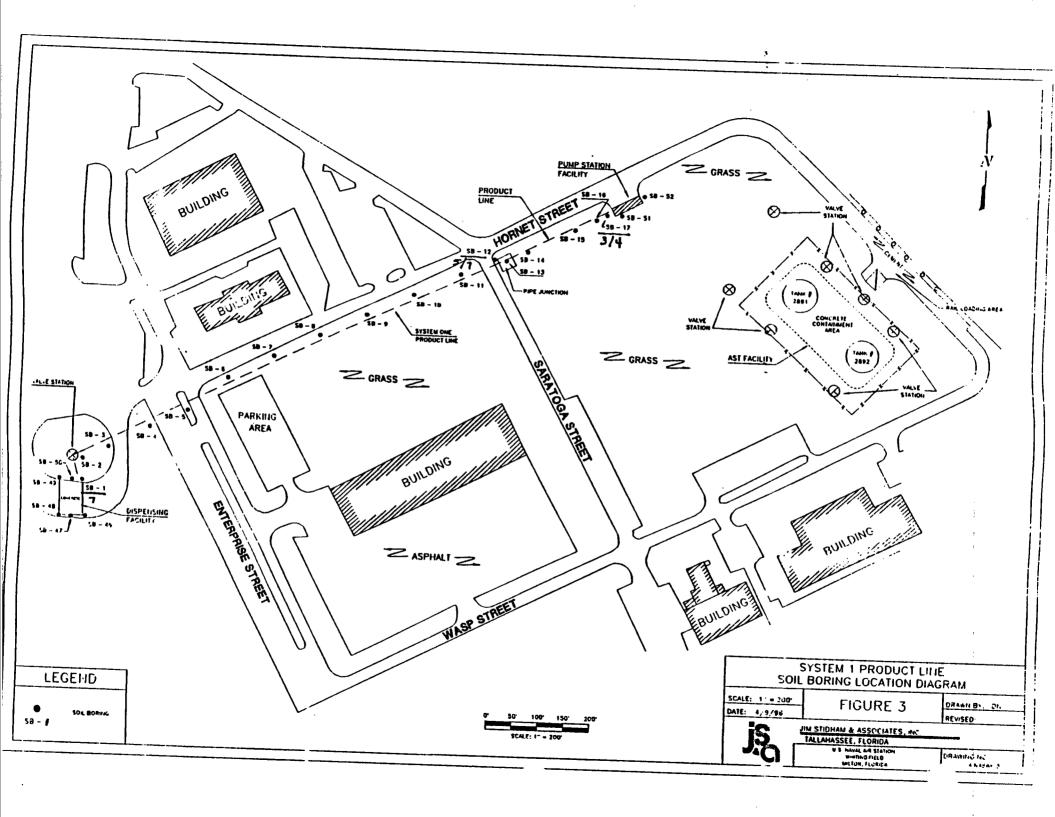
UNITED STATES NAVAL AIR STATION MILTON, FLORIDA FDEP FACILITY ID #: 578516386

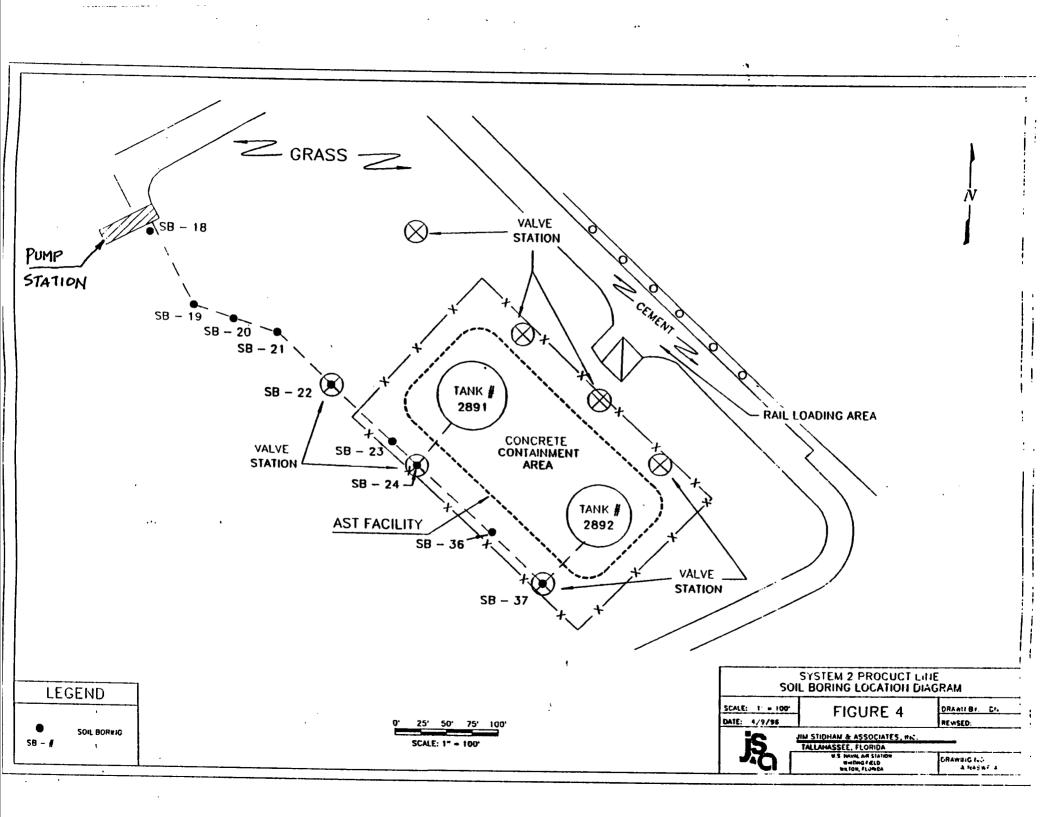
TABLE 1 (CONT.)

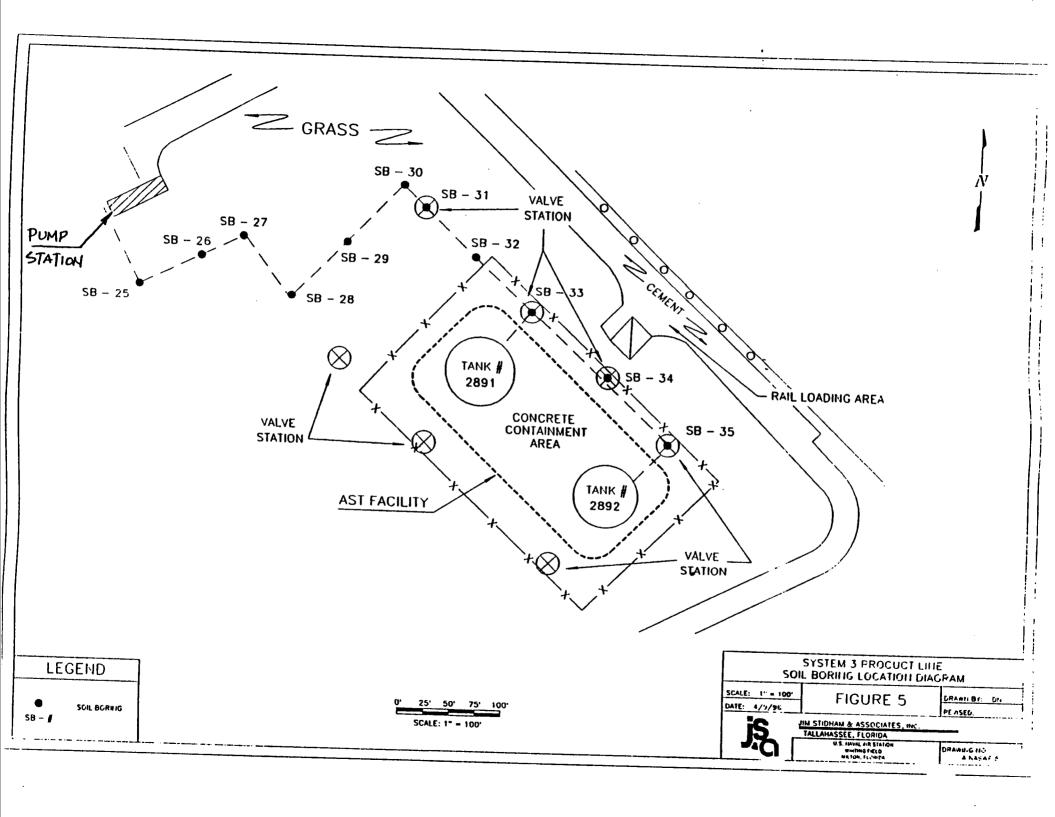

SBLOCATION	DEPTH (ft)	OVA POIN	Blo (ppn) TVH (ppm	SOIL DESCRIPTION
SB - 42	1	1	<1	<1	TAN & BROWN SAND
SB - 42	3	>1000	360	>640	GREY SAND
SB - 42	4	500	60	440	GREY SAND
SB - 43	1	21	9.3	11.7	BROWN SAND
SB - 43	3	>1000	120	>880	GREY SAND
SB - 43	4	>1000	28	>972	GREY SAND
SB - 44	1	29	11	18	TAN SAND
SB - 44	3	150	215	INV	GREY SAND
SB - 44	4	320	140	180	GREY SAND
SB - 45	1	<1	<1	<1	BROWN SAND
SB - 45	3	90	36	54	GREY SAND
SB - 45	4	110	26	84	GREY SAND
SB - 46	1	<1	<1	<1	TAN SAND
SB - 46	3	<1	<1	<1	TAN SAND
SB - 46	5	<1	<1	<1	BROWN CLAYEY SAND
SB - 46	7	<1	<1	<1	BROWN SANDY CLAY
SB - 47	1	<1	<1	<1	TAN SAND
SB - 47	3	<1	<1	<1	TAN SAND
SB - 47	5	<1	<1	<1	BROWN CLAYEY SAND
SB - 47	7	<1	<1	<1	BROWN SANDY CLAY
SB - 48	1	<1	<1	<1	TAN SAND
SB - 48	3	<1	<1	<1	TAN SAND
SB - 48	5	<1	<1	<1	TAN CLAYEY SAND
SB - 48	7	<1	<1		BROWN SANDY CLAY
SB - 49	1	<1	<1		TAN SAND
SB - 49	3	<1	<1		TAN SAND
SB - 49	5	<1	<1		
SB - 49	7	<1	<1		TAN CLAYEY SAND
SB - 50	1	<1	<1		BROWN SANDY CLAY TAN SAND
SB - 50	3	<1	<1		
SB - 50	5	<1	<1		TAN SAND
SB - 50	7	<1	<1		BROWN CLAYEY SAND
SB - 51	1	<1	<1	<1	BROWN SANDY CLAY GREY SAND
SB - 51	3	<1	<1		
SB - 51	5	<1	<1		GREY SAND
SB - 51	7	<1	<1		TAN SAND
SB - 52	1	<1	<1		GREY SAND
SB - 52	3	<1	<1		GREY SAND
SB - 52	5	<1	<1		BROWN SAND
SB - 52	7	<1.	<1		GREY SAND
	! <u></u>	71.		~1	GREY SAND

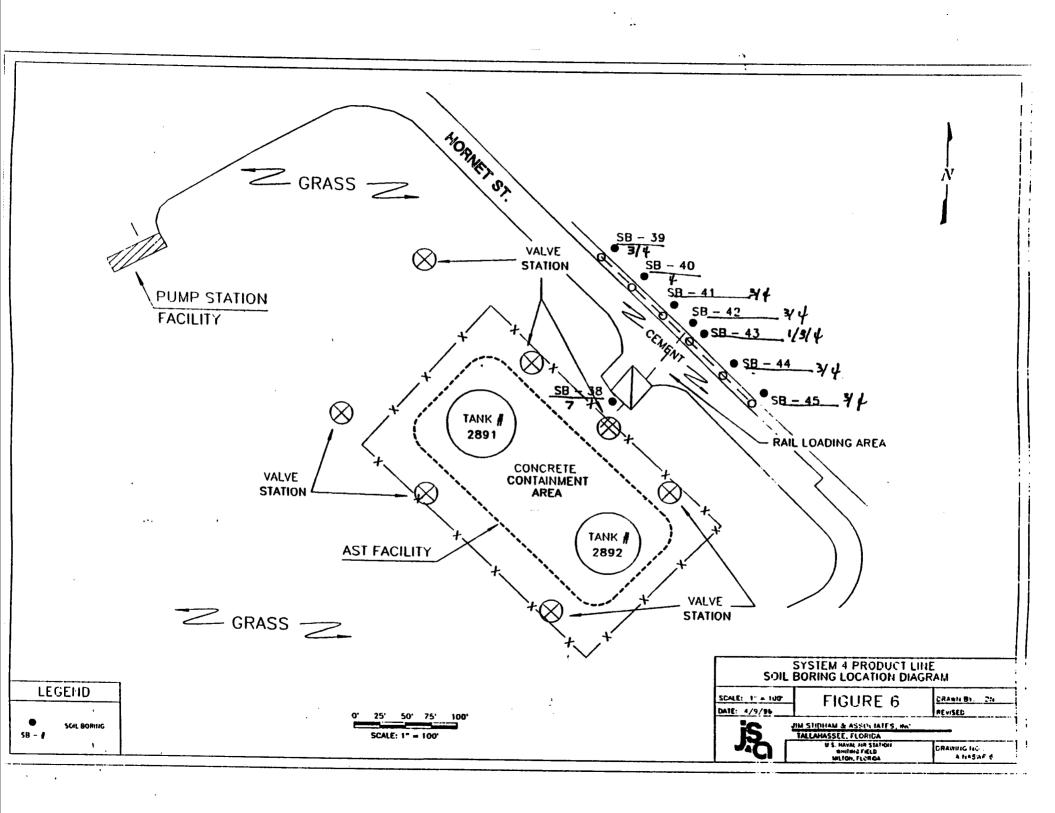

OVA - Organic Vapor Analyzer
RIO - Biogenic Reading

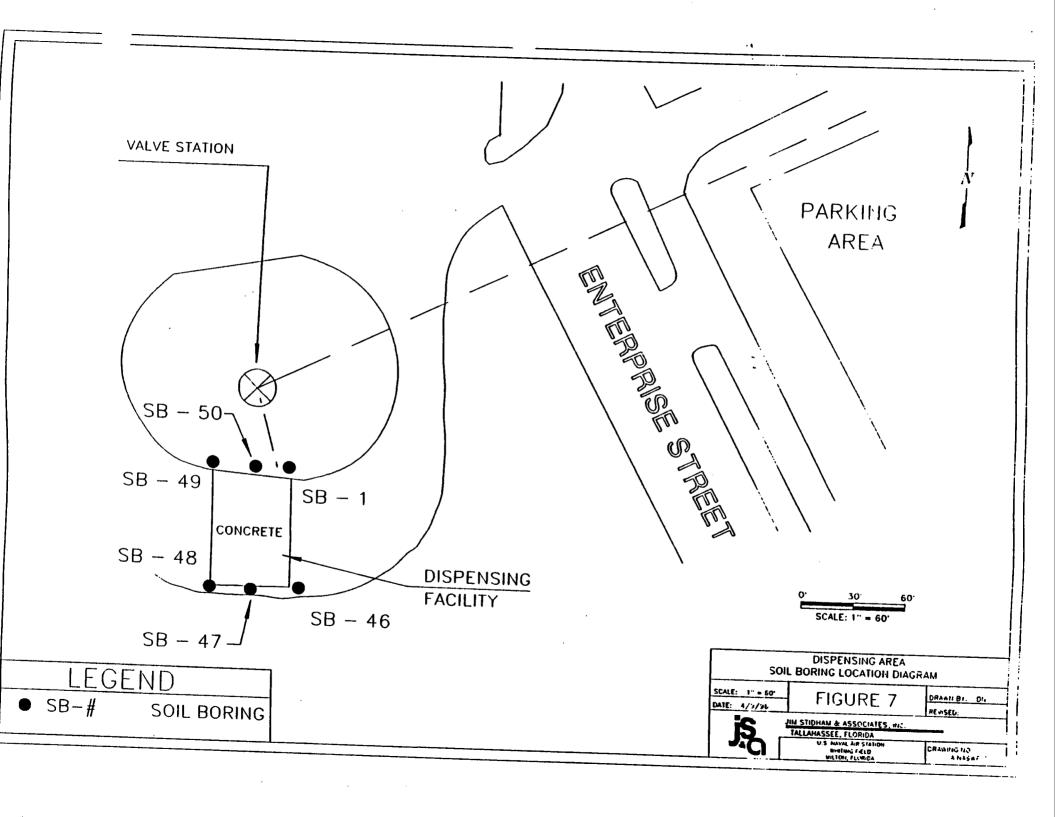

/H - Total Volatile Hydrocarbons


PPM - Parts Per Million


SB - Soil Boring INV - Invalid







APPENDIX A

SAR SUMMARY SHEET

SITE ASSESSMENT REPORT SUMMARY SHEET

Facility Name:	NAS Whiting Field, Oi	/Water Separa	tor, JP-5 Pipeli	ne Reimburs	ement Site:	
Location:	Milton, Florida			State Cor	tract Site:	
EDI#:		FAC I.D.#	578516386	Other:	Non-Prog.	_ I
Date Reviewed:		Local (Government:			
(1) Source of Spill:	Unknown		·	Date of Sp	oill: 21 S	ep 94
(2) Type of Product:	Gasoline Group	Gallons L	.ost	Keros	ene Group	Gallons Lost
	☐ Leaded	48		☐ Kerosen	e ,	
	☐ Unleaded Regular			☐ Diesel	i	
	☐ Unleaded Premium			☐ JP-4 Jet	Fuel	
٠.	☐ Gasohol			☑ Jet A Fu	ei .	Unknown
	☐ Undetermined			☐ Unknow	n .	
sludge	A: IRA soil excavat moval of oil/water spears	itor,	' ☑	duct Removal: Soil Removal:	34.45	(gals) (cubic yds) (cubic yds)
	 			oil Incineration:		
(4) Free Product still (5) Maximum Groun contamination le	dwater Tota	Maximum al VOA: N/A lead: N/A	apparent produ	penzene: N/A N/A N/A	N/A EDB: other:	N/A N/A
•	escription: Light brov 5 ft. dy clay, clay and clayey Il extent of soils contamin	sand from ≈ 5 f	to 25 ft. bls. (m	rained sand w/ so aximum depth dri yes	lled during th	
Highest current	soil concentration (OVA:	>5000	ppm) or (E	PA method 5030/	8020: 1	95.6 ppb)
(8) Lower aquifer co	ntaminated? (yes/no)		Depth of ver		No vertic	al extent well
(9) Date of last com	plete round of groundwat	er sampling:	N/A	Date of last s	soil sampling	: 19 Nov 97
(10) QAPP approved	d? (yes/no) Date:	6/16/97				
(11) Direction (e.g. I	NNW) of surficial ground	vater flow:	N/A	(Figur e	on pag	e)
(12) Average depth	to groundwater:	90	- (ft)			
(13) Observed range	e of seasonal groundwat	er fluctuations:	N/A	(ft) (Based on collected durin investigation)		ata
(14) Estimated rate	of groundwater flow:	N/A	(ft/day)			
(15) Hydraulic gradi	ent across site: N/A	· (ft/ft)				
(16) Aquifer charact Hydraulic cond Storage coeffic Aquifer thickne Effective soil p Transmissivity (17) Other remarks:	luctivity N/A cient N/A ess N/A orosity N/A N/A	ft/c ft/f ft % ga	l/day/ft	Method	/ contaminat	ed soil is limited
• •	of vadose zone and dep					

APPENDIX B

DISCHARGE NOTIFICATION FORMS

Florida Department of Environmental Regulation

Twin Towers Office Bidg. • 2600 Blair Stone Road • Tallahassec, Florida 52599-2400

DER form 1.	17-781.900(1)
/ i 0	techarge Recording Form
Checone Com	December 10, 1990
DER Appren	
	If does on by OERQ

Discharge Reporting Form

	Biodiai go i topot mog i som
Use	this form to notify the Department of Environmental Regulation of.
1.	Results of tank tightness testing that exceed allowable tolerances within ton days of receipt of test result.
2.	Petroleum discharges exceeding 25 gallons on pervious surfaces as described in Section 17-761.460 F.A.C. within one working day of discovery
3.	Hazardous substance (CERCLA regulated), discharges exceeding applicable reponable quantities established in 17-761.460(2) F.A.C., withir one working day of the discovery.
4.	Within one working day of discovery of suspected releases confirmed by: (a) released regulated substances or pollutants discovered in the surrounding area, (b) unusual and unexplained storage system operating conditions, (c) monitoring results from a leak detection method or from a tank closure assessment that indicate a release may have occurred, or (d) manual tank gauging results for tanks of 550 gallons or less, exceeding ten gallons per weekly test or five gallons averaged over four consecutive weekly tests.
	Mail to the DER District Office in your area listed on the reverse side of this form
•	PLEASE PRINT OR TYPE Complete all applicable blanks
1.	DER Facility ID Number: 578516386 2. Tank Number: 2993A 3. Date: 9-21-94
4.	Facility Name: NAS WHITING FIELD
	Facility Owner or Operator: Public Wooks OFFICER
```	Facility Address: 7151 USS WASP STREET MILTON, FL 32570-68.
	Telephone Number: (904) C23-7268 County Santa Posa
	Mailing Address:
5.	Date of receipt of test results or discovery: 9-21-94 month/day/year
	Method of initial discovery. (circle one only)  A. Liquid detector (automatic or manual)  D. Emptying and Inspection.  F. Vapor or visible signs of a discharge in the vicinity.
	B. Vapor detector (automatic or manual) E. Inventory control. G. Closure: (explain)
	C. Tightness test (underground tanks only).  H. Other: Product in Monitor well.
7.	Estimated number of gallons discharged: Walk Now! (From Twas Jemeyer) From (F, Tank Taken OT of SELVICE)
8.	What part of storage system has leaked? (circle all that apply) A Dispenser B. Pipe C. Fitting D. Tank E. Unknown
9.	Type of regulated substance discharged. (circle one)
	A. leaded gasoline D. vehicular diesel L. used/waste of V. hazardous substance includes pesticides, ammonia.  B. unleaded gasoline F. aviation gas M. diesel Service CAS number)
•	C. gasohol (G.) jet fuct O. new/lubo oil Z. other (write in name)
	1. 2. 3. 4. 1. 4. 5. 6.

11. Type of financial responsibility. (circle one)

10. Cause of leak. (circle all that apply)

A. Unknown

B. Solit

A. Third party insurance provided by the state insurance contractor

B. Self-insurance pursuant to Chapter 17-769.500 F.A.C.

C. Loose connection

D. Corrosion

C. Not applicable

G. Spill.

H. Overfill

I. Other (specify).

To the best of my knowledge and belief all information submitted on this form is true, accurate, and complete.

E. Puncture

F. Installation failure



### 2993 Closure Assessment Florida Department of Environmental Regulation

Twin Towers Office Bidg. • 2600 Blair Stone Road • Tallahassee, Florida 32399-2400

1	
CER For	# 17-701 900(1)
Form Take	Discharge Reporting Form
Et serve	Date December 10, 1990
DER Are	deston Fld
L	( dea to by C(A)

## Discharge Reporting Form

Use this form to notify the Department of Environmental Regulation of:

- Results of lank lightness testing that exceed allowable tolerances within ten days of receipt of test result.
- 2. Fetroleum discharges exceeding 25 gallons on pervious surfaces as described in Section 17-761.460 F.A.C. within one working day of discovery.
- 3. Hazardous substance (CERCLA regulated), discharges exceeding applicable reportable quantities established in 17-761.460(2) F.A.C., within one working day of the discovery.
- 4. Within one working day of discovery of suspected releases confirmed by: (a) released regulated substances or pollutants discovered in the surrounding area, (b) unusual and unexplained storage system operating conditions, (c) monitoring results from a leak detection method or from a tank closure assessment that indicate a release may have occurred, or (d) manual tank gauging results for tanks of 550 pallons or less, exceeding ten gallons per weekly test or five gallons averaged over four consecutive weekly tests.

Mail to the DER District Office in your area fisted on the reverse side of this form

## PLEASE PRINT OR TYPE

	Complete all applicable blanks
1.	DER Facility ID Number: 3. Date: 3. Date: 3.
١.	Facility Name: BLDG 2993
	Facility Owner or Operator: BULK FUELING Facility Address: WASP RD
	Telephone Number: (904) 623-7246 County: SANTA ROSA
	Mailing Address: DICC 7183 Langley ST, NAS Whiting Field MILTON FL. 32:
5.	Date of receipt of test results or discovery: 01/17/97 (Previously 07/75 by G. Swaw) month/day/year
8.	Method of Initial discovery. (circle one only)  A. Liquid delector (automatic or manual)  B.) Vapor detector (automatic or manual)  C. Tightness lest (underground tanks only).  D. Emptying and Inspection.  E. Inventory control.  F. Vapor or visible signs of a discharge in the vicinity  G. Closure:  (explain)  H. Other: Conyantation Assessment
7.	Estimated number of gallons discharged: UNKNOWN Reform by 6. Swan 09/1995
8.	What part of storage system has leaked? (circle all that apply) A. Dispenser B. Pipe C. Fitting D. Tank (E) Unknown
9.	Type of regulated substance discharged. (circle one)  A. leaded gasoline  D. vehicular diesel  L. used/waste oil  W. hazardous substance includes pesticides, ammonia, chlorine and derivatives (write in name or Chemical Abstract Service CAS number)  C. gasohol  O. new/lube oil  Z. other (write in name)
0.	Cause of leak. (circle all that apply)  ① Unknown C. Loose connection E. Puncture G. Spill 1. Other (specify)  B. Spill D. Corrosion F. Installation failure H. Overfill
1.	Type of financial responsibility. (circle one)  A. Third party insurance provided by the state insurance contractor  B. Self-Insurance pursuant to Chapter 17-769.500 F.A.C.  D. None
2.	To the best of my knowledge and belief all information submitted on this form is true, accurate, and complete.  LESLIE J NICHOLS  Printed Name of Owner, Operator or Authorized Representative  Signature of Owner, Operator or Authorized Representative

60 Ge ermieille Cerlei Naces, I leine 32201 3791 FO4 438 8300

1

3313 Maquire BI W. Surle 232 Dilando, Ponda 33933-3767

4120 CAL / w Ave

1903 S Carport Am S NA A West Farm Brech, Poulde 33404

#### **APPENDIX C**

CLOSURE REPORT AND IRA REPORT FOR OIL/WATER SEPARATOR

Energie Date December 10, 1990	_	DER Form s 17-7019C-X5] Underground Elorage lank inst form 1de Removal Form for Certified Co
MA Argentan No	_	
(I And in by DEn)		CER Victorian No

## Underground Storage Tank Installation and Removal Form For Certified Contractors

Pollulant Storage System Specialty Contractors as defined in Section 489.113, Florida Statutes (Certified contractors as defined in Section 17-761.200, I torida Administrative Code) shall use this form to certify that the installation, replacement or removal of the storage tank system(s) located at the address listed below was performed in accordance with Department Reference Standards.

ioni dt tr	e address listed below was performed in accordance with Department Reference	rence Standards.	
Gei	neral Facility Information	•	
1.	DER Facility Identification No.:		
	OOOD DULY FUELING	Telephone: (	
3.	Facility Name: 2993 BULK FUELTING  Street Address (physical location): WASP STREET		
4.	Owner Name: UNITED STATE NAVY R.O.I.C.C	Telephone: ()	
5	Owner Address: BLDG 1416 7183 LANGLEY ST NAS WE	ITTING FIELD COLLEGE	
<b>6</b> .	Number of Tanks: a. Installed at this time b. Removed	at this time	
7.	Tank(s) Manufactured by: <u>UNKNOWN</u>	Nork Completed: DECEMBER 11, 1996	
8.	Date Work Initiated: <u>DECEMBER 10, 1996</u> 9. Date V	Nork Completed	
Ple	iderground Pollutant Tank Installation Checklist ase certify the completion of the following installation requirements by placin	ng an (X) In the appropriate box.	
4	The tanks and pining are corresion resistant and approved for use by Stat	e and Federal Laws.	
2	Excavation, backfill and compaction completed in accordance with NFPA (American Petroleum Institute) 1615, PEI (Petroleum Equipment Institute) R	(National Fire Protection Association) 30(8/), API P100-87 and the manufacturers' specifications.	
	Tanks and piping pretested and installed in accordance with NFPA 30(87),	API 1615, PEI/RP100(87) and the manufacturers	
4	<ul> <li>Steel tanks and piping are cathodically protected in accordance with NFP 1748, STI (Steel Tank Institute) R892-89 and the manufacturer's specification</li> </ul>	A 30(87), API 1632, UL (Underwriters Laboratory) ons.	
	Tanks and piping tested for tightness after installation in accordance with	NFPA 30(87) and PEI/RP100-87.	
6	<ul> <li>Monitoring well(s) or other leak detection devices installed and tested in a Administrative Code (F.A.C.)</li> </ul>	accordance with Section 17-761.640, Florida	
•	7. Spill and overfill protection devices installed in accordance with Section 1	7-761.500, F.A.C.	
1	3. Secondary containment installed for tanks and piping as applicable in ac	cordance with Section 17-761.500, F.A.C.	
P	lease Note: The numbers following the abbreviations (e.g. API 1615) are put	dication or specification numbers issued by these inst	tulions.
ι	Inderground Pollutant Tank Removal Checklist		_
	Closure assessment performed in accordance with Section 17-761.800, F.	.A.C.	lx.
	2. Underground tank removed and disposed of as specified in API 1604 in	acordance with Section 17-761.800, F.A.C.	X

ER Form <u>17-781</u>	.BOQ(5)
iom Tae Namoral F	.800(5) nel Biorage Tank Installation & own for Certified Contractors
Recove Date Dece	mber 10, 1990
ON romanges FISC	If med in by DERI

#### Certification

hereby certify and attest that I am familiar with the facility that is registered with the Florida Department of Environmental Regulation; that to the est of my knowledge and belief, the tank installation, replacement or removal at this facility was conducted in accordance with Chapter 489 and ection 376.303, Florida Statutes and Chapter 17-761, Florida Administrative Code (and its adopted reference sources from publications and standards the National Fire Protection Association (NFPA), the American Petroleum Institute (API), the National Association of Corrosion Engineers (NACE), merican Society for Testing and Materials (ASTM); Petroleum Equipment Institute (PEI); Steel Tank Institute (STI); Underwriters Laboratory (UL); and that and Integral piping manufacturers' specifications; and that the operations on the checklist were performed accordingly.

PC-C055743
PSSSC Number
1-1497
Date
1-14-97
Date
1-14-95
Date

ne owner or operator of the facility must register the tanks with the Department at least 10 days before the installation. The installer must submit is form no more than 30 days after the completion of installation to the Department of Environmental Regulation at the address printed at the top page one.



## Florida Department of Environmental Regulation

Twin Towers Office Bidg. ● 2600 Blair Stone Road ● Tallahassee, Florida 32399-2400

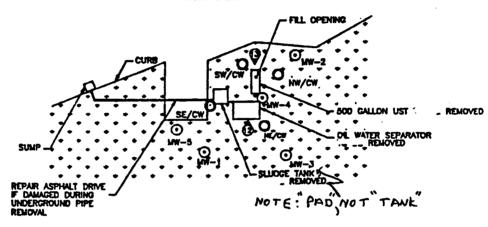
DER Form I	11-101 8440)
	Closure Assessment Form
	December 10, 1990
DER Apple	

## Closure Assessment Form

owners of storage tank systems that are replacing, removing or closing in place storage tanks shall use this form to demonstrate that a storage system closure assessment was performed in accordance with Rule 17-761 or 17-762, Florida Administrative Code. Eligible Early Detection Incenve (EDI) and Reimbursement Program sites do not have to perform a closure assessment.

#### Please Print or Type Complete All Applicable Blanks

1. Dat	e:	1-14-	97 SANTA ROSA
2. DE	R Facilit	y ID Nur	nber: 3. County:
4. Fac	cility Nar	me: <u>BL</u>	DG 2993
5. Fac	cility Ow	ner:E	BULK FUELING
		•	I CD DD
7. Ma	iling Ad	Idress:	BOLCE NAS WHITING FIELD, 1105 CANOUET STATE TO A SECOND
8. Tel	ephone	Number	: (904) 623-7246 9. Facility Operator: 002K FVE 6:178
			nk(s): (Circle one or both) A. Aboveground or (B) Underground
			Stored: FUEL JP-5
			(Circle one) A. Replaced (B.)Removed C. Closed in Place D. Opgraded (aboveground tarms only)
			Closed: 14. Age of Tanks:UNKNOWN
			Facility Assessment Information
		Nol	
Yes	No A	pplicable	1. Is the facility participating in the Florida Petroleum Liability Insurance and Restoration Program (FPLIRP)?
	X.		Is the facility participating in the Florida Fetiolechi Education     Was a Discharge Reporting Form submitted to the Department?
11	ىما		If yes, When: Where:
[x]		[]	3. Is the depth to ground water less than 20 feet?
لـــــــا			4. Are monitoring wells present around the storage system?  If yes, specify type: Water monitoring Vapor monitoring
["]	x	П	and the state of the second in the monitoring wells or within the excavation?
		k ]	6. Were the petroleum hydrocarbon vapor levels in the soils greater than 500 parts per million for gasement
(223	<u></u> ;		Specify sample type: Vapor Monitoring wells Soil sample(s)  7. Were the petroleum hydrocarbon vapor levels in the soils greater than 50 parts per million for diesel/kerosene?
x_l	L		Oracity comple type:       Vapor Maniforing wells
$ \mathbf{x} $			8. Were the analytical laboratory results of the ground water sample(s) greater than the allowable state target levels?  (See target levels on reverse side of this form and supply laboratory data sheets)
רו		k	9. If a used oil storage system, did a visual inspection detect any discolored soil indicating a release?
} <u>—</u> !	X		10. Are any potable wells located within 1/4 of a mile radius of the facility?
١	X		11. Is there a surface water body within 1/4 mile radius of the site? If yes, indicate distance:
	•		


ate:_	1-14-97		CLOSUR	ASSESSMENT REVIE	EW CHECKLIST
icility	Name:	BLDG	2993		Facility #
cility	Owner or	Operat	or: BULK	FUELING	
cility	Address:_	WASP	RD		Phone
ailing	Address:	-			
s	No	N/A Unk			
-	<u>x</u>		Is	his an EDI/PLIRP/ATF	RP site? (circle one)
ve th	e following	g forms	been receiv	ed?:	
-				rage Tank Registration/I	Notification Form
-			Dis	charge Notification/Rep	orting Form?
•		<del></del>	Clo	sure Assessment Form?	
•			Wa (w/	s an OVA used on site? carbon filter?)	FID/PID (circle one)
		•	We	e any OVA readings greapplies)	ater than 50 ppm or 500 ppm? (circle one
•	<u>x</u>		Was		contamination/discharge? (i.e. soil staining,
			Was	excessively contaminated information received)	Isoil removed? If so, how much?
			Wei	e manifests for soil, water	er, sludge &/or tanks received?
			Is th	e depth to groundwater	given? If so what
			Was don	groundwater analysis do	one? 601 602 610 418.1 (circle test(s)
				e any results greater than	n SRLs? If so which?
					,
e the	following	been re			
-				ab analyses?	
			All (	OVA readings?	
			Lab	quality assurance and con	ntrol statement or #?
			Field	quality assurance and co	ontrol statement?
le ma	p indication	g location	on of:		•
				ge tank system?	
	<u> </u>			nsers?	
	<u>x</u>			toring wells?	
	-		build	ings/roads?	
	<u>X</u>		storn	drains?	
				ling? soil & groundwater	(chrcle)
	- -		•	G. Sundwater	المارين

#### BUILDING 2993

NOT TO SCALE



PARKING LOT



LEGEND

CRASS

PHOTO NUMBER/DIRECTION

MONITORING WELL (MW)

COMPLIANCE WELLS(CW)

(SE = SOUTHEAST)

(NE = NORTHEAST)

(NW = NORTH-MEST)

C. P. E. T. L. C. C.

## PETROLEUM CONTAMINATION INITIAL REMEDIAL ACTION NOTIFICATION FORM

This notification provides written confirmation of initial remedial action (IRA) as required by Chapter 17-770.300(5) and (8), Florida Administrative Code. Notification must be within three working lays of initiation of an IRA. Upon completion of the IRA, an Initial Remedial Action Report should be submitted.

		ity Name: BUILDING 2993
I.		A STATE OF
		1
	DER F	of Initiation of IRA: 01/13.41997
II.	FREE	PRODUCT RECOVERY (Please provide brief responses.) NOW E
	λ.	Type of Product Discharged:
	В.	Estimated Quantity Lost: gallons
•	с.	in the life Borenoies, brown and
		utility Conduits (Attach Site Plan Indiana)
		1 1
	D.	Method of Product Recovery:
	E.	Type of Discharge During Product Recovery:
	F.	Type of Treatment and Expected Effluent Quality from Any
		Discharge:
	G.	Quantity and Disposal of Recovered Product:
· II	1. SOI	L EXCAVATION
	λ.	Estimated Volume of Contaminated Soil Excavated (Attach Site Plan Indicating location of excavation(s) and soil borings): 34.4.5 cubic yards (in place) (See Clasure

Report For Sketch

в.	Type of Product in Soil:
c.	Method Used to Determine Excess Soil Contamination:
D.	Method of Treatment or Disposal of Contaminated Soil:  LAND FILL
•	
This no	CORTING  tification should be submitted to the appropriate Local  if any, or to:
F1	orida Department of Environmental Regulation
	reau of Waste Cleanup
260	00 Blair Stone Road
Tai	Llahassee, Florida 32399-2400
Person Divin	Completing Form  Lunger Halle. 2-11-97
fitle,	Affiliation Signature, Date

## PETROLEUM CONTAMINATION INITIAL REMEDIAL ACTION REPORT FORM

An Initial Remedial Action report, summarizing the initial remedial action (IRA), should be prepared to satisfy the requirements of Chapters 17-770.630(1)14; 17-773.500(1)(a)4; and 17-773.500(2)(a)4, Florida Administrative Code, (FAC). This form may be used for the IRA report. The report should be sent to the appropriate local program and:

Florida Department of Environmental Regulation Bureau of Waste Cleanup Engineering Support Section 2600 Blair Stone Road Tallahassee, FL 32399-2400

I.	FACILITY NAME: BUILDING #. 2993
	Facility Address: WASP.R.L., NASIW. HITING FIEID, NILTON F
	DER Facility Number (if applicable):
	Date IRA Initiated: 12/26/1996 Date IRA Completed: 01/15/19.9
ıı.	FREE PRODUCT RECOVERY NONE
Α.	Type(s) of Product Discharged:
в.	Quantity
•	1. Estimated Gallons Lost:
•	2. Gallons Recovered:through (date)
	3. Attach Exhibit Indicating Amount of Product Recovered,
	Dates and Cumulative Totals.
C.	Attach a Scaled Site Plan, Indicating the Locations and Product Thickness in Wells, Boreholes, Excavations, or Utility Conduits and Wells Utilized for Recovery of Free Product.
D.	Method of Product Recovery:
E.	Type of Discharge During Product Recovery:
	MAY 1992 . Florida Department of Environmental Regulation

F.	Type of Treatment, i.e., Oil/Water Separator:
G.	Attach Written Proof of Proper Disposal of Recovered Product:
ııı.	SOIL EXCAVATION
	NOTE: Soil shall be defined as excessively contaminated using the procedure stated in Chapter 17-770.200(2), FAC. Representative soil sampling shall be performed as close to the time of excavation as possible, but at no time shall exceed three (3) months prior to the start of excavation. Stockpiled soils greater than thirty (30) days on site waiting for treatment and disposal, must be re-sampled immediately prior to disposal to assure soils are still excessively contaminated.
	If soil sampling data indicates that the amount of soil that is excessively contaminated exceeds 1500 cubic yards, treatment of all excessively contaminated soil at the site shall be addressed in a remedial action plan, and no soil IRA activities shall be performed except for the removal of soils in the immediate vicinity of the tanks.
	Only soil above the ambient water table at the time of excavation can be considered as excessively contaminated soil.
•	Unless the established weight per unit volume of 1.4 tons/cubic yard (as referenced in FAC Rule 17-775) is used for the excavated soil, the weight per unit volume must be determined by a field test (in which an accurately measured volume of soil is weighed) at the time of excavation.
λ	Volume of Contaminated Soil Excavated in Cubic Yards:
NOTE	Attach written proof from the Department in the form of an Alternate Procedure Approval Order authorizing excavating over 1500 cubic yards if applicable. Authorization must be prior to the excavation of soils.
в.	Type(s) of Product in Soil: <u>HYDROCARBON (JP5)</u>
	MAY 1992 . Florida Department of Environmental Regulation

01/20/91 ste Mánagement Inc. - Florida istrial Waste Bervice Corner **BC Nº** 6653 NON- HAZARDOUS MANIFEST TRANSPORT Truck Number _=== I hereby acknowledge that the above described materials neratora Signatura Walott Description of Profile Account Total Waste Materials Number 不り Name of Authorized (Print) Blomature Réceiot Date WHITE . GENERATOR PINK - LANDFILL GOLD - TRANSPORTER .N- 904- 623-7515

PHONE NO. : 9549730310

25004 283 7100

1011 - 1050

13:54

Jan. 20 1997 02:37FH F2

UH : MH - 1MSC

01/20/91 13:54 PHONE NO. : 9549730310

**₽**904 263 7100

Jan. 20 1997 02:37Fii F3 ผู้ชนา

Waste Menagement Inc. - Florida Industrial Waste Sérvice Center 2900 N.W. 48¹² Street Pompano Beach, FL 33373

A Waste Maringariura Company	NON- HAZAR	M euod	ANIFES1	r	SC Nº 6654
UINIHAITH				THANSPO	
Generatore NAVAL AVE. STATE		Driver No Truck Nu		Earres	2 Chavers
Leaders ST Mutter	EL 37570	1 hereb	Actorouler!	of that the abo	rve-described metarists sits were transported listed below.
DIE 201618-1644 P.O.V	المراجع المراجع	Zar		Claren	
Generators Signature - 2 5 7	٧,		Signature		Delivery Date
Description of					Weight
Waste Malerials		Profile Number	Account	Total	
PATROLICUS CONTANUAT	rel Sou	469309	E0057 23	16.98	
She Name SPRINGHIEL REC	COVAIL JANS	at in	•		
Address 4945 Hay 273,	GRACEVILLE	L'I			
Phone Humber (904) 263-710	0	019	644		
I hereby acknowledge resolution the above	described materials.	<del>, , ,</del>	0	1 1 1 1	1/12/02
Name of Authorized (Prin	n)	Signa	bure	V (10-0	Fleoript Date
ROTATISHED - STATM	AETTOM-TWOLITT	PINK-L	ANDFILL	· GOLD - TRAN	<b>SPORTER</b>
FAX COAY TO	11-904-62	3-75/5	_		

#### APPENDIX D

**CLOSURE REPORT FOR PRODUCT LINE** 

#### JIM STIDHAM & ASSOCIATES, INC.

547 N. MONROE ST., SUITE 201 - POST OFFICE BOX 3547 - TALLAHASSEE. FLORIDA 32303-3547 TELEPHONE: 904/222-3975 FAX: 904/681-0560

## PRODUCT LINE CLOSURE ASSESSMENT REPORT

## UNITED STATES NAVAL AIR STATION WHITING FIELD MILTON, FLORIDA 32570

**FDEP FACILITY I.D. #578516386** 

APRIL 12, 1996

#### PREPARED FOR:

SANTA ROSA COUNTY STORAGE TANK PROGRAM ESCAMBIA COUNTY PUBLIC HEALTH UNIT 1190 WEST LEONARD STREET, SUITE 2 PENSACOLA, FLORIDA 32501

PREPARED BY:

JIM STIDHAM & ASSOCIATES, INC.

# CLOSURE ASSESSMENT REPORT UNITED STATES NAVAL AIR STATION WHITING FIELD FACILITY ID # 578516386

#### INTRODUCTION

On March 27, 1996 Jim Stidham & Associates, Inc. (JSA) began performance of closure assessment activities on a system of product lines that were once affiliated with two above ground storage tanks (ASTs) that are identified as Tank #2891 and Tank #2892. This AST facility and the associated product line system are located on the south side of Hornet Street, United States Naval Air Station, Whiting Field, Milton, Florida 32570 (Figure 1). The product line system extends from the northwest area of the AST facility that contains Tank #2891 and Tank #2892 to a pump station facility located on Hornet Street. The product line system then proceeds in a southwesterly direction along Hornet Street under Saratoga Street to a dispensing facility. The product line system was taken out of service and closed in place by Environmental Recovery, Inc. (ERI) and Minority Speciality Contractors Inc. (MSC).

JSA arrived on the site on March 27, 1996 and met with Eric Taylor of Minority Speciality Contractors to discuss the product line closure assessment at the above referenced facility. The product lines are constructed of metal and are located approximately three feet below land surfaces (BLS) in most areas. The product line system included in this closure assessment consists of two separate lines from the AST facility to the pump station building located along Hornet Street with a single 10-inch product line extending from this pump station facility to a product dispensing area. There is also a 4-inch product line connecting the two ASTs to a former dispensing area approximately 110 feet to the northeast of the AST facility. Figure 2 displays the product lines included in this closure assessment. Each of the two product lines that extend from the ASTs to the pump station line connects to both ASTs and contain valve stations at various locations between the ASTs and the pump station facility. One 8-inch product line services the northeast side of the AST facility and travels in a northwesterly direction to the southwest side of the pump station facility. A second 10-inch product line services the southwest side of the AST facility and extends from the AST in a northwesterly direction and connects to the southeast portion of the pump station facility. A 10inch line extends in a southwesterly direction along Hornet Street from the pump station to a former dispensing facility located southwest of the junction of Hornet and Enterprise Streets. The following

information summarizes the activities that occurred at this facility as a part of this Product Line Closure Assessment Report.

#### SITE HISTORY

There is a total of four product line systems associated with the AST system at the above mentioned facility. The product lines at this facility were taken out of service through in-place closure by Environmental Recovery, Inc. (ERI) from February 26, 1996 to February 29, 1996. The product lines involved in this product line closure assessment were affiliated with two 231,000 gallon ASTs that contain Jet Petroleum #5 (JP-5).

## PRODUCT LINE ASSESSMENT (PLCA)

Beginning on March 26, 1995 and concluding on March 29, 1996, JSA performed the product line closure assessment for these four product line systems that were affiliated with the two ASTs (Tank #2891 and Tank #2892). The two ASTs at this facility remain in service (Figure 2).

Soil samples were collected for organic volatile analysis (OVA) at the beginning and the end of each product line and also on a 100-foot interval basis along each product line. Additional soil samples were collected in the areas where product line direction changes occur and also in the areas of valve stations located along the product lines associated with this closure assessment. Soil samples were also collected in the vicinity of both the former rail loading area and the former dispensing area. For the purposes of this product line closure assessment report, the four product lines in question will be identified as System 1, System 2, System 3, and System 4. System 1 is identified as the product line extending from the dispensing area to the pump station facility. System 2 is identified as the product line that extends from the southeast side of the pump station facility to the southwest side of the AST facility. The product line that extends from the southwest area of the pump station facility to the northeast portion of the AST facility is identified as System 3. System 4 consists of the 4-inch product line that extends from the northeast area of the AST facility to a former rail loading area located approximately 110 feet to the northeast.

System 1 consists of approximately 1315 feet of 10 inch metal product lines. This product line maintains a consistent below gradient depth of approximately 3 feet except for an aboveground junction located near Soil Boring #13 (SB-13) and an exposed portion near the pump station facility.

A total of 17 soil borings was installed along this product line, beginning with SB-1 located near the dispensing facility and ending with SB-17 near the pump station facility. SB-2 was installed near a valve station that is located on a 45-degree direction change in the product line. All other soil borings are located on a 100-foot interval basis (or less depending upon obstructions such as roads and parking lots). Elevated OVA values were encountered in soil collected from SB-1, SB-12, and SB-17. Soil samples collected from the remaining soil borings indicated OVA readings below detection limits. Two additional soil borings were also installed around the pump station facility. These soil borings were installed to a depth of 7 feet BLS and revealed OVA readings below detection limits. Figure 3 displays the location of the soil borings along the product line located within System 1.

The second system, System 2, consists of approximately 605 feet of 10 inch metal product lines. With the exception of an exposed area near the pump station facility, this product line is approximately 3 feet below land surface (BLS) throughout its extent. Soil borings SB-18 through SB-24 and SB-36 and SB-37 were installed along the product line on a 100-foot interval basis to include product line direction changes and valve stations. SB-18 was installed on one end of the product line near the pump station facility and SB-37 was installed at the opposite end near the AST area. All soil borings, with the exception of SB-18, were installed to a depth of 7 feet BLS for collection of soil for OVA analysis. SB-18 was installed to a depth of only four feet BLS since the product line is exposed above land surface in this area. All soil samples collected from these soil borings revealed OVA values below detection limits. Figure 4 displays the location of these soil borings along the product line designated as System 2.

System 3 contains approximately 795 feet of 8 inch metal product lines. The majority of this product line is approximately 3 feet BLS except for the portion of the product line located within the AST facility. The depth of the product line within the AST facility is approximately 8 feet BLS. A total of eleven soil borings were installed along this product line system, beginning with SB-25 near the pump station facility and ending with SB-35 in the area of the AST facility. In the area where this product line is located approximately 3 feet BLS, soil borings SB-25 through SB-32 were installed to a depth of 7 feet BLS. Within the area of the AST facility where this product line is located approximately 8 feet BLS, soil borings SB-33, SB-34, and SB-35 were installed to a depth of 12 feet BLS. These three soil borings were installed in the immediate vicinity of valve stations. All of the soil borings along System 3 were installed on a 100-foot interval basis and included all product line direction changes and valve stations. All soil samples collected for OVA analysis along this product line contained values below detection limits. The locations of these soil borings are displayed in Figure 5.

The product line contained within System 4 consists of metal 4 inch piping that extends from the northeast portion of the AST facility to a former rail loading area located approximately 110 feet to the northeast side of the AST facility. At one time, this AST facility was supplied with JP-5 products by way of rail transport. The product line designated as System 4 once served as an off loading area for the JP-5 fuel transported to the AST facility by rail. This system contains six off loading junctions, all of which combine into one 4-inch product line that was once connected to the AST facility. A total of seven soil borings (SB-39 through SB-45) were installed in the rail loading area of this product line with one soil boring adjacent to each rail loading junction and one soil boring in the area where this product line changes direction to travel to the AST facility. An additional soil boring (SB-38) was also placed between the rail loading area and the AST facility. Soil samples collected for OVA analysis from SB-39 through SB-45 revealed excessive levels of petroleum contamination from soil collected at depths of three and four feet BLS. Soil collected for analysis from SB-38 revealed excessive levels of petroleum contamination from soil collected at a depth of 7 feet BLS. Figure 6 displays the product line designated as System 4 and the soil borings installed along this product line.

Additional soil borings were also placed in the area of the former dispensing facility. A total of six soil borings were installed around this former dispensing area, including SB-1 which was installed in the area where the product line joins the dispensing area. Soil samples taken for OVA analysis from SB-46 through SB-50 contained values below detection limits. However, as previously mentioned, SB-1 contained excessive levels of petroleum contamination at a depth of 7 feet BLS. The locations for the soil borings around this dispensing facility are displayed in Figure 7.

The threshold for excessively contaminated soil was set at 50 parts per million (ppm) following Chapter 62-770.200(2) for mixed product group contamination sources. The Closure Assessment Form is included in Appendix A.

The soil collected for analysis was scanned with a Foxboto Century 128, organic vapor analyzer (OVA). This instrument is a flame ionization detector (FID) used to conduct field analysis of soil samples. Standard manufacturers operating procedures were followed and all field calibrations were made according to manufacturer's recommendations.

The soil samples were sealed in half-filled 16 ounce glass jars and the OVA readings were taken in the headspace above the soil as recommended by FDEP's <u>Guidelines for Assessments and Remediation of Petroleum Contaminated Soils</u> and in accordance with Florida Administrative Code

(FAC) Chapter 62-770.200(2). Duplicate soil samples were collected from each test site so that samples could be analyzed for total biogenic content using a carbon filter attachment. Total Volatile Hydrocarbons (TVH) were then determined by subtracting the biogenic reading from the OVA reading.

#### **SUMMARY**

During Product Line Closure Assessment activities of the product line systems affiliated with tank #2891 and tank #2892, JSA installed fifty-two soil borings in the soil located around the product lines involved in this product line closure assessment. Soil borings were installed along the product lines on a 100-foot interval basis. Soil borings were also installed in the areas of product line direction changes and also in the areas of valve junction stations and product line termination areas. While the majority of the soil collected for OVA analysis revealed values below detection limits, soil samples collected from SB-1, SB-12, SB-17, SB-38, SB-39, SB-40, SB-41, SB-42, SB-43, SB-44, and SB-45 revealed excessive levels of petroleum contamination (>50 ppm). A Discharge Reporting Form has been prepared for submittal and is included in Appendix B.

### **TABLES**

### UNITED STATES NAVAL AIR STATION MILTON, FLORIDA

FDEP FACILITY ID #: 578516386

### TABLE 1

SBLOCATION	DEPTH (ft	OVA (ppn	1) BIO ( ppr	n)TVH ( or	OM SOU DEPARATION
SB - 1	1	<1	<1	<1	TAN SAND
SB - 1	3	<1	<1	<1	TAN SAND
SB - 1	5	<1	<1	<1	TAN SAND
SB - 1	7	640	29	611	
SB - 2	1	<1	<1	<1	TAN SANDY CLAY
SB - 2	3	<1	<1	<1	TAN SAND
SB - 2	5	<1	<1	<1	TAN SAND
SB - 2	7	<1	<1	<1	TAN SAND
SB - 3	1	<1	<1	<1	TAN & BROWN SANDY CLA
SB - 3	3	<1	<1		TAN SAND
SB - 3	5	<1	1 <1	<1	TAN SAND
SB - 3	7	<1	<1	<1	TAN SAND
SB - 4	1	<1	<del></del>	<1	TAN & ORANGE SANDY CLA
SB - 4	3	<1	<1	<1	TAN SAND
SB - 4	5	<1	<1	<1	TAN SAND
SB - 4	7		<1	<1	TAN SAND
SB - 5	1	<1	<1	<1	TAN SAND
SB - 5	3	<1	<1	<1	DARK SAND
SB - 5	5	<1	<1	<1	TAN SAND
SB - 5	7	<1	<1	<1	TAN SAND
SB - 6		<1	<1	<1	TAN SANDY CLAY
SB - 6	1	<1	<1	<1	TAN SAND
SB - 6	3	<1	<1	<1	TAN SAND
SB - 6	5	<1	<1	<1	BROWN CLAYEY SAND
SB - 7	7	<1	<1	<1	BROWN SANDY CLAY
SB - 7	1	<1	<1	<1	TAN SAND
SB - 7	3	<1	<1	<1	TAN SAND
SB - 7	5	<1	<1	<1	TAN & BROWN CLAYEY SAN
SB - 8	7	<1	<1	<1	TAN & BROWN SANDY CLAY
	1	<1	<1	<1	TAN SAND
SB - 8	3	<1	<1	<1	TAN SAND
SB - 8	5	<1	<1	<1	TAN & BROWN CLAYEY SAND
SB - 8	7	<1	<1	<1	TAN & BROWN CLAYEY SANL
SB - 9	1	<1	<1	<1	TAN & BROWN SANDY CLAY TAN SAND
SB - 9	3	<1	<1	<1	TAN SAND
SB - 9	5	<1	<1	<1	
SB - 9	7	<1	<1	<1	BROWN & ORANGE SAND
SB - 10	1	<1	<1	<1	TAN & ORANGE SANDY CLAY
SB - 10	3	<1	<1	<1	TAN SAND
SB - 10	5	<1	<1		TAN SAND
SB - 10	7	<1	<1	<u>&lt;1</u> <1	TAN & BROWN CLAYEY SAND

### UNITED STATES NAVAL AIR STATION MILTON, FLORIDA

FDEP FACILITY ID #: 578516386

### TABLE 1 (CONT.)

SBLOCATION	DEPTH (ft)	OVA (ppm)	BIO ( ppm	TVH ( ppm	SOIL DESCRIPTION
SB - 11	1	<1	<1	<1	TAN SAND
SB - 11	3	- <1	<1	<1	TAN SAND
SB - 11	5	<1	<1	<1	BROWN SAND
SB - 11	7	<1	<1	<1	TAN & BROWN SANDY CLAY
SB - 12	1	<1	<1	<1	TAN SAND
SB - 12	3	<1 ,	<1	<1	TAN SAND
SB - 12	5	250	2	248	TAN & GREY SAND
SB - 12	7	440	4.4	435.6	TAN & GREY SAND
SB - 13	1	<1	<1	<1	TAN SAND
SB - 13	3	<1	<1	<1	TAN SAND
SB - 13	5	<1	<1	<1	TAN SAND
SB - 13	7	<1	<1	<1	TAN SANDY CLAY
SB - 14	1	<1	<1	<1	TAN SAND
SB - 14	3	<1	<1	<1	TAN SANDY CLAY
SB - 14	5	<1	<1	<1	TAN SAND
SB - 14	7	<1	<1	<1	TAN SANDY CLAY
SB - 15	1	<1	<1	<1	DARK SAND
SB - 15	3	<1	<1	<1	TAN SAND
SB - 15	5	<1	<1	<1	TAN SANDY CLAY
SB - 15	7	<1	<1	<1	TAN SANDY CLAY
SB - 16	1	<1	<1	<1	REDISH SAND
SB - 16	3	<1	<1	<1	TAN SANDY CLAY
SB - 16	5	<1	<1	<1	TAN SANDY CLAY
SB - 16	7	<1	<1	<1	TAN SANDY CLAY
SB - 17	1	<1	<1	<1	TAN SAND
SB - 17	3	>1000	<1	>1000	GREY & TAN SANDY CLAY
SB - 17	4	>1000	<1		GREY & TAN SANDY CLAY
SB - 18	1	<1	<1		TAN SAND
SB - 18	3	<1	<1	<1	TAN & BROWN CLAYEY SAND
SB - 18	4	1.2	<1		BROWN SANDY CLAY
SB - 19	1	<1	<1	<1	TAN SAND
SB - 19	3	<1	<1	<1	TAN SAND
SP 10	5	<1	<1	<1	GREY & WHITE CLAYEY SAND
\$P_10	7	<1	<1	<1	GREY & WHITE CLAYEY SAND
\$5 20	1	<1	<1		TAN SAND
\$8.20	3	<1	<1	<1	TAN SAND
\$200	5	<1	<1		TAN & BROWN CLAYEY SAND
SB - 20	7	<1	<1	<1	TAN & BROWN SANDY CLAY
SB - 21	1	<1	<1		TAN SAND
SB - 21	3	<1	<1	<1	TAN SAND

OVA - Organic Vapor Analyzer
BIO - Biogenic Reading
TVH - Total Volatile Hydrocarbons
PPM - Parts Per Million

SB - Soil Boring

### UNITED STATES NAVAL AIR STATION MILTON, FLORIDA FDEP FACILITY ID #: 578516386

### TABLE 1 (CONT.)

SB LOCATION	MESSIE (E	) OVA ( ppr	n) 810 ( epsi	TVHIR	dia)
SB - 21	5	<1	<1	<1	
SB - 21	7	<1	<1	<1	BROWN CLAYEY SAND
SB - 22	1	N/A	N/A	N/A	BROWN SANDY CLAY
SB - 22	3	<1	<1	<1	TAN CAND
SB - 22	5	<1	<1	<1	TAN SAND
SB - 22	7	<1	<1	<1	TAN & BROWN CLAYEY SA
SB - 23	1	<1	<1	<del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del>	TAN & BROWN SANDY CLA
SB - 23	3	<1	<1	<1	TAN SAND
SB - 23	5	<1	<1		TAN SAND
SB - 23	7	<1	<1	<1	BROWN CLAYEY SAND
SB - 24	1	<1	<1	<1	BROWN SANDY CLAY
SB - 24	3	<1	<1	<1	TAN SAND
SB - 24	5	<1		<1	TAN SAND
SB - 24	7	<1	<1	<1	BROWN CLAYEY SAND
SB - 25	1	<1	<1	<1	BROWN SANDY CLAY
SB - 25	3	<1	<1	<1	TAN SAND
SB - 25	5		<1	<1	TAN SAND
SB - 25	7	<1	<1	<1	BROWN CLAYEY SAND
SB - 26	1	<1	<1	<1	BROWN SANDY CLAY
SB - 26	3	<1	<1	<1	TAN SAND
SB - 26	5	<1	<1	<1	TAN SAND
SB - 26	7	<1	<1	<1	TAN SANDY CLAY
SB - 27	1	<1	<1	<1	TAN SANDY CLAY
SB - 27	3	<1	<1	<1	DARK SAND
SB - 27		<1	<1	<1	TAN SAND
SD - 2/	5 7	<1	<1	<1	TAN SANDY CLAY
SD - 20		<1	<1	<1	TAN SANDY CLAY
\$5 - 20	1	<1	<1	<1	TAN SAND
SB - 20	3	<1	<1	<1	TAN SAND
SB - 20	5	<1	<1	<1	TAN SANDY CLAY
SB - 29	7	<1	<1	<1	TAN SANDY CLAY
SB - 29	1	<1	<1	<1	TAN SAND
SB - 29	3	<1	<1	<1	TAN SAND
SB - 29	5	<1	<1	<1	TAN SANDY CLAY
	7	<1	<1	<1	TAN SANDY CLAY
SB - 30	1	<1	<1	<1	TAN SANDY CLAY
SB - 30	3	<1	<1	<1	TAN SAND
SB - 30	5	<1	<1	<1	TAN SAND
SB - 30	7	<1	<1	<1	RED SANDY CLAY
SB - 31	1	<1	<1	<1	RED SANDY CLAY
SB - 31	3	<1.	<1		TAN SAND TAN SAND

- Organic Vapor Analyzer - Biogenic Reading

TVH - Total Volatile Hydrocarbons
PPM - Parts Per Million

SB - Soil Boring

### UNITED STATES NAVAL AIR STATION MILTON, FLORIDA FDEP FACILITY ID #: 578516386

### TABLE 1 (CONT.)

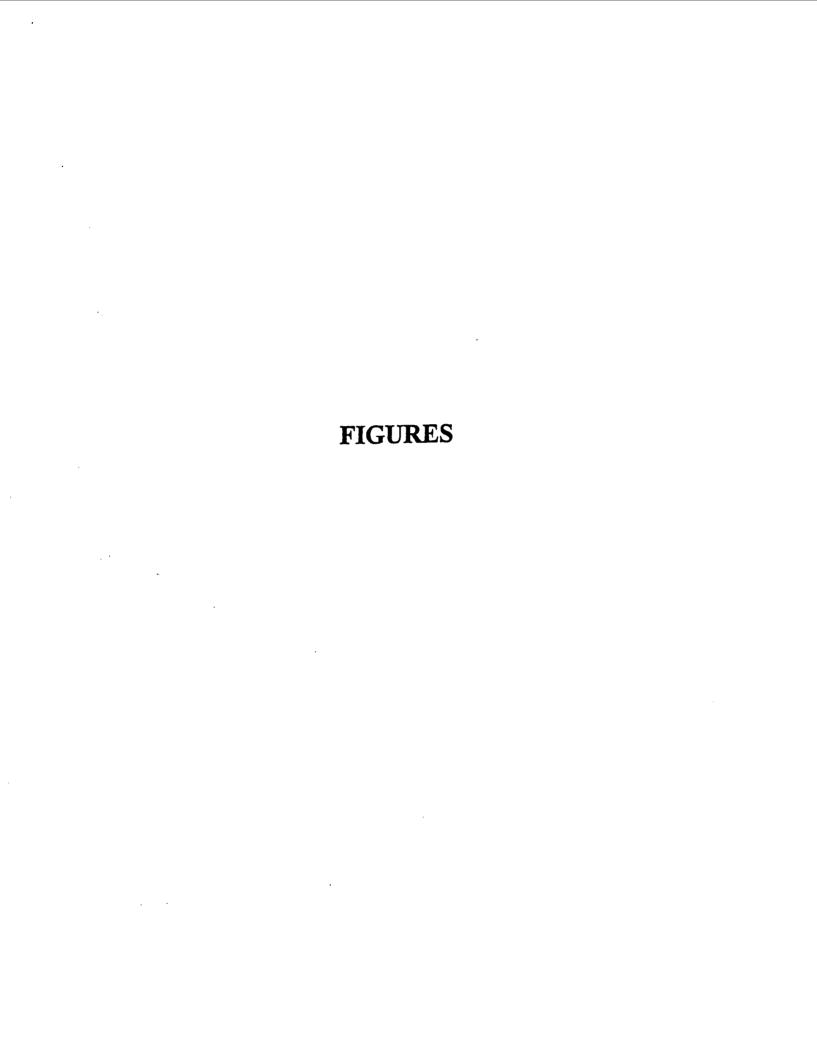
SB LOCATION	DEPTH (ft)		BIO (ppm)	TVH ( ppm	SOIL DESCRIPTION
SB - 31	5		<1		RED SANDY CLAY
	7	-	<1		RED SANDY CLAY
	T T		<1		DARK SAND
	B		<1		TAN SAND
SB - 32	5	<1	<1		TAN SANDY CLAY
			<1		TAN SANDY CLAY
SB - 33	<b>B</b>		<1		GRAVEL & SAND FILL
			<1		BROWN SANDY CLAY
			<1		BROWN SANDY CLAY
SB - 34	8	<1	<1	<1	GRAVEL & SAND FILL
SB - 34	10	<1	<1	<1	BROWN SANDY CLAY
SB - 34	12	<1	<1	<1	BROWN SANDY CLAY
SB - 34	14	<1			BROWN SANDY CLAY
SB - 34	16	<1			BROWN SANDY CLAY
SB - 34	18	<1	<1	<1	BROWN SANDY CLAY
SB - 34	20	<1	<1	<1	CLAY (DA
SB - 35	8	<1	<1	<1	GRAVEL & SAND FILL
SB - 35	10	<1	<1	<1	BROWN SANDY CLAY
SB - 35					
SB - 36	1				
SB - 36					
SB - 36					
SB - 36					
SB - 37	1				
SB - 37					
SB - 37					
	1				
	4				
SB - 38	7	300	120	180	DARK SANDY CLAY
SB - 39	1	<1	<1	<1	TAN
SB - 39	3	19			
SB - 39	4		15	265	DARK SANDY CLAY
	1		<1		TAN SANDY CLAY
	1	1 4	<1		TAN SANDY CLAY
	4		32	638	GREY & TAN SANDY CLAY
SB - 41	1		<1	<1	TAN SAND
SB - 41	1		<1		GREY & TAN SANDY CLAY
SB - 41	4		62	>938	GREY & TAN SANDY CLAY

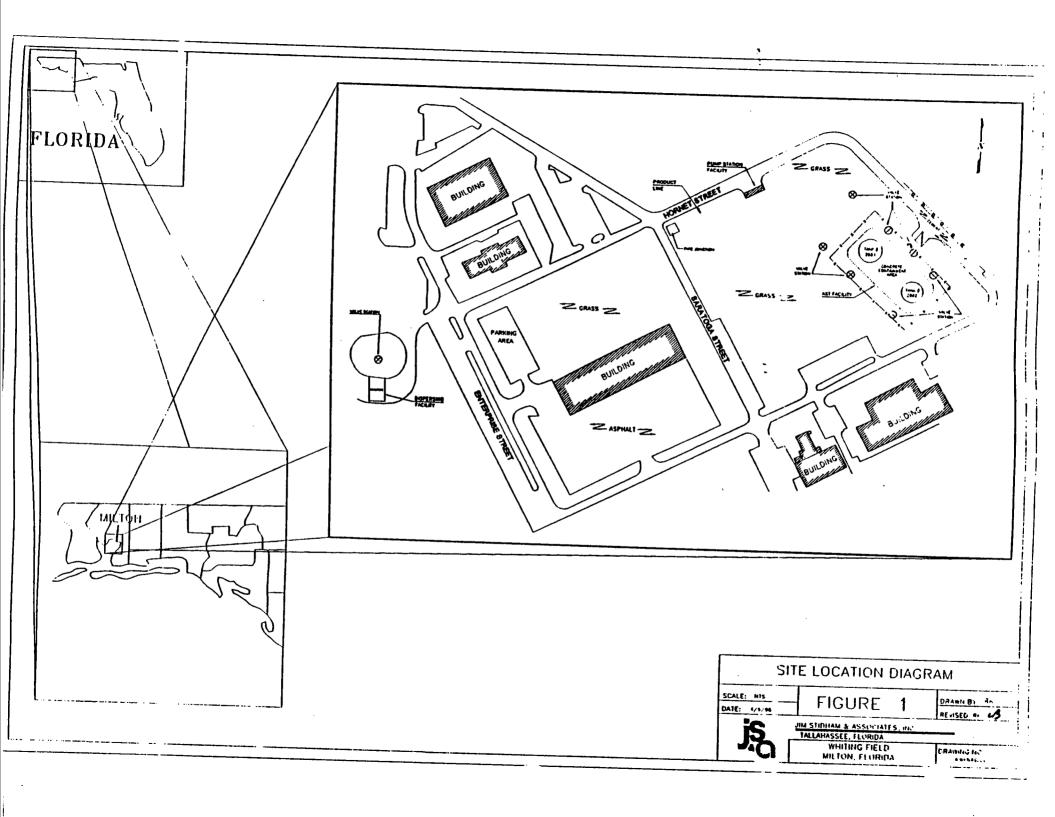
OVA - Organic Vapor Analyzer
BIO - Biogenic Reading
TVH - Total Volatile Hydrocarbons
PPM - Parts Per Million

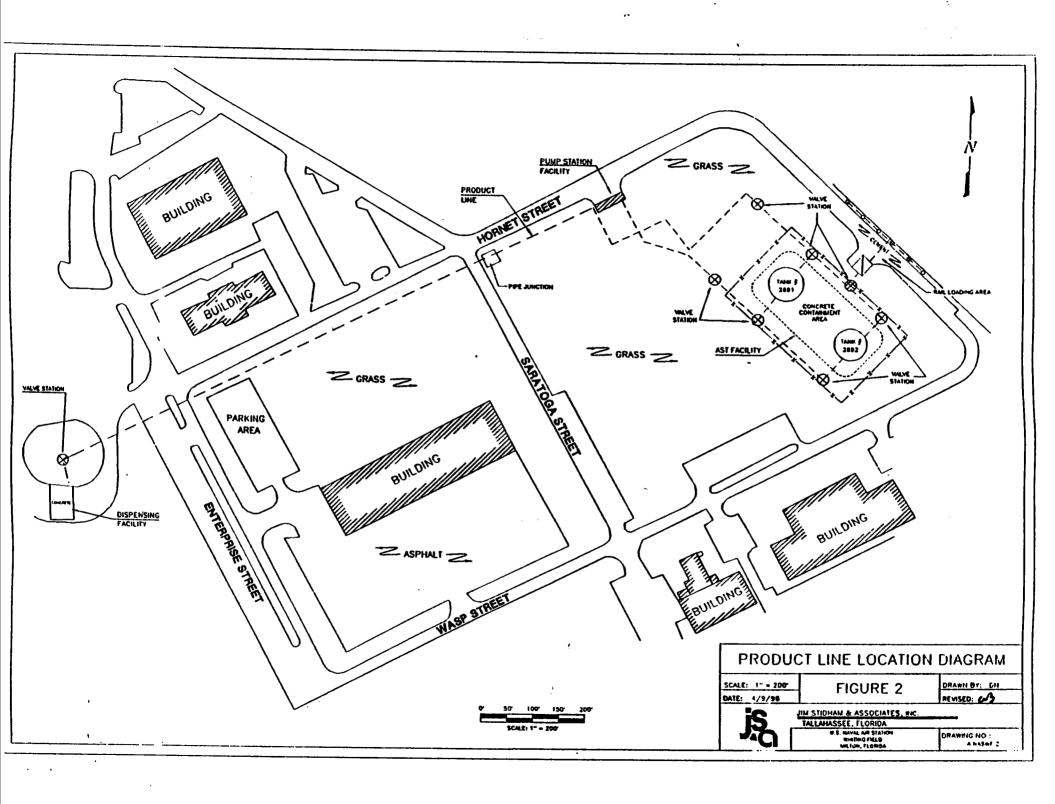
SB - Soil Boring

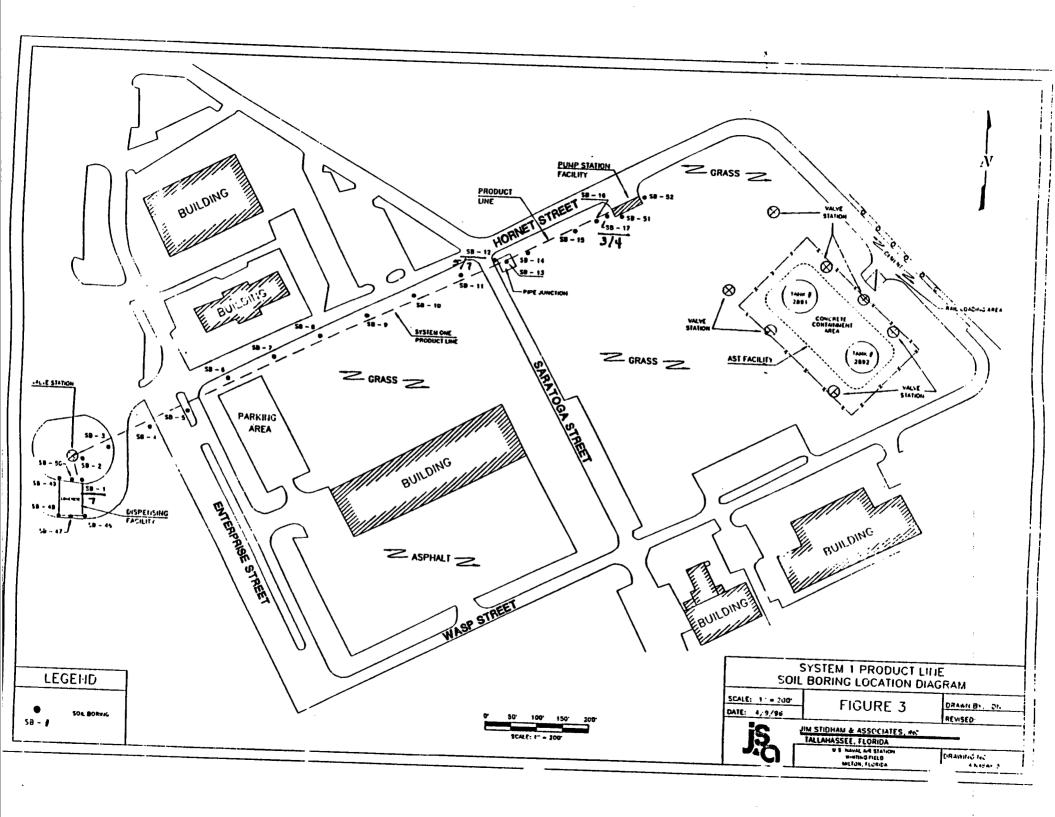
### UNITED STATES NAVAL AIR STATION MILTON, FLORIDA

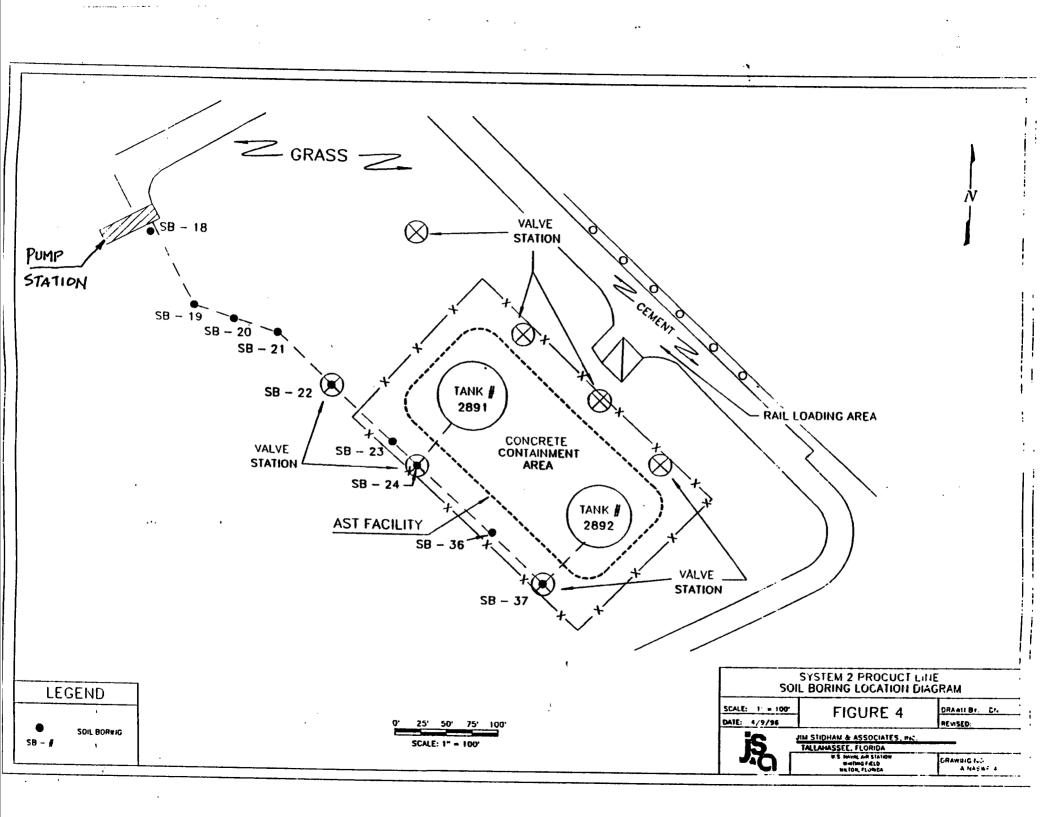
FDEP FACILITY ID #: 578516386

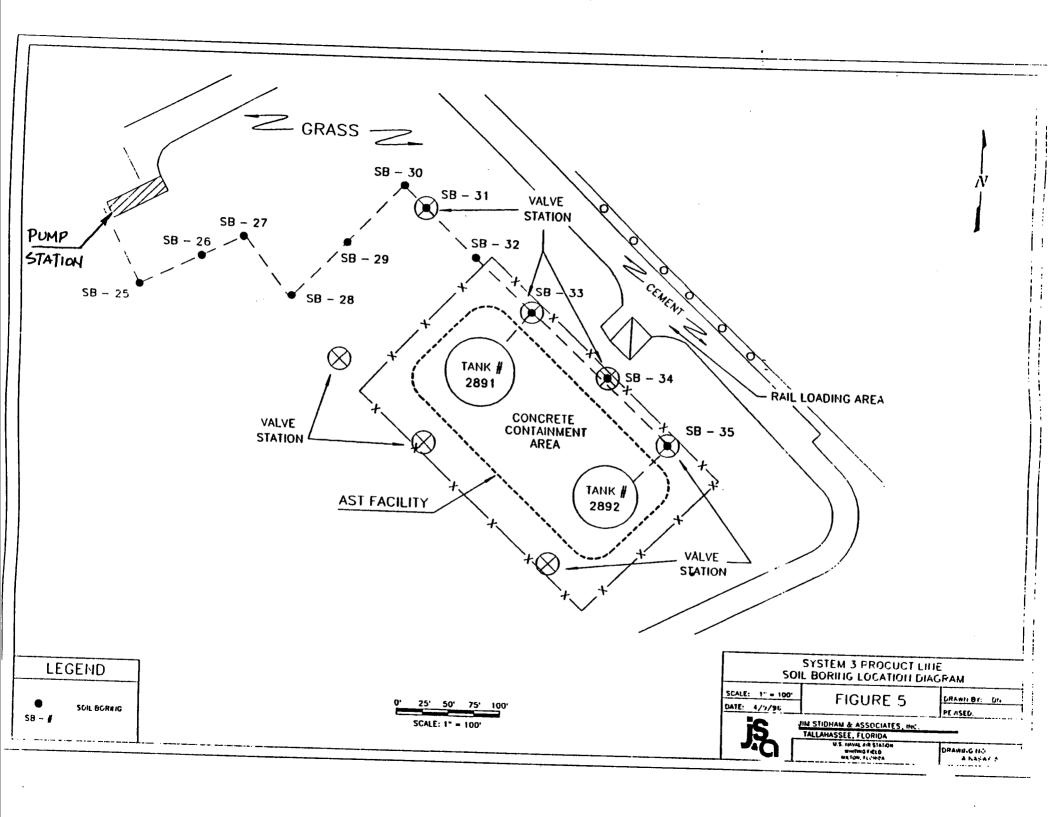

### TABLE 1 (CONT.)

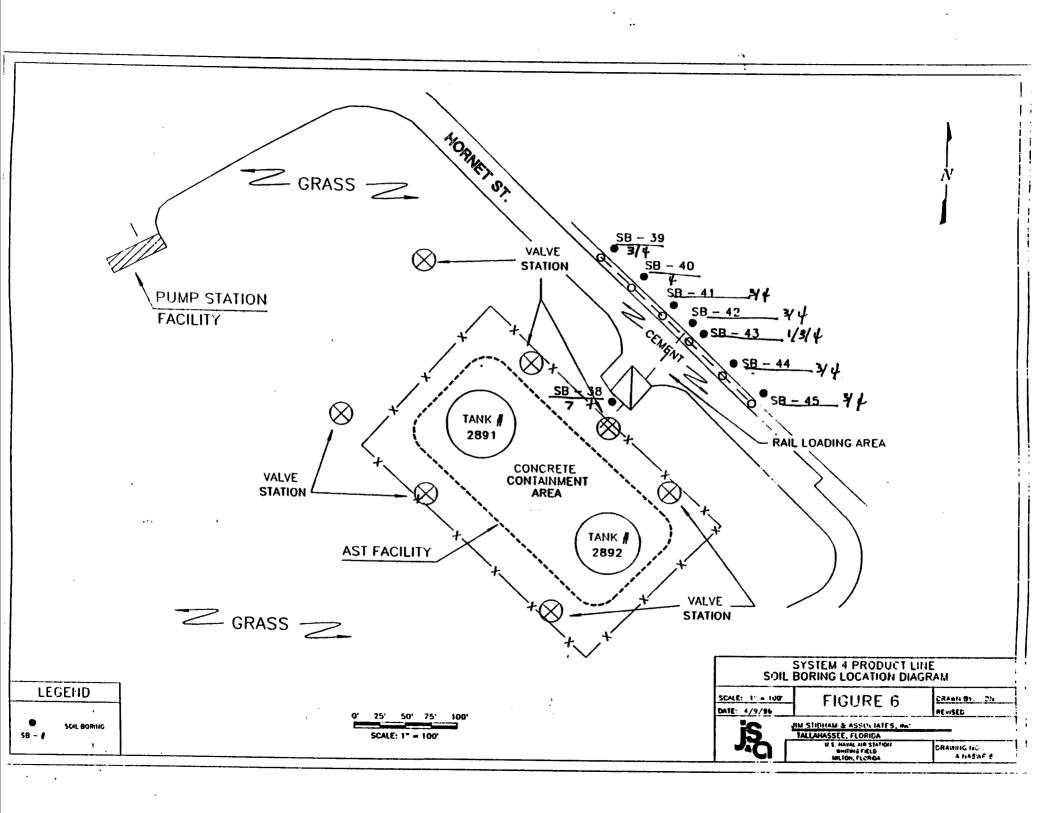

SB LOCATION	DEPTH (ft)	OVA (ppm)	BIO (ppm	TVH (ppm	) SOIL DESCRIPTION
SB - 42	1	<1	<1	<1	TAN & BROWN SAND
SB - 42	3	>1000	360	>640	GREY SAND
SB - 42	4	500	60	440	GREY SAND
SB - 43	1	21	9.3	11.7	BROWN SAND
SB - 43	3	>1000	120	>880	GREY SAND
SB - 43	4	>1000	28	>972	GREY SAND
SB - 44	1	29	11	18	TAN SAND
SB - 44	3	150	215	INV	GREY SAND
SB - 44	4	320	140	180	GREY SAND
SB - 45	1	<1	<1	<1	BROWN SAND
SB - 45	3	90	36	54	GREY SAND
SB - 45	4	110	26	84	GREY SAND
SB - 46	1	<1	<1		TAN SAND
SB - 46	3	<1	<1		TAN SAND
SB - 46	5	<1	<1		BROWN CLAYEY SAND
SB - 46	7	<1	<1		BROWN SANDY CLAY
SB - 47	1	<1	<1		TAN SAND
SB - 47	3	<1	<1		TAN SAND
SB - 47	5	<1	<1		BROWN CLAYEY SAND
SB - 47	7	<1	<1		BROWN SANDY CLAY
SB - 48	1	<1	<1		TAN SAND
SB - 48	3	<1	<1		TAN SAND
SB - 48	5	<1	<1		TAN CLAYEY SAND
SB - 48	7	<1	<1		
SB - 49	1	<1	<1		BROWN SANDY CLAY TAN SAND
SR - 40	3	<1	<1		TAN SAND
SR _ 40	5	<1	<1		TAN CLAYEY SAND
SR_40	7	<1	<1		BROWN SANDY CLAY
SB - 50	1	<1	<1		TAN SAND
SR - 50	3	<1	<1		TAN SAND
SB - 50	5	<1	<1		BROWN CLAYEY SAND
SB - 50	7	<1	<1		BROWN SANDY CLAY
SB - 51	1	<1	<1	<1	GREY SAND
SR - 51	3	<1	<1		GREY SAND
SR - 51	5	<1	<1		TAN SAND
SR - 51	7	<1	<1		GREY SAND
SR. 50	1	<1	<1		GREY SAND
SB - 52	3	<1	<1		BROWN SAND
SB - 52	5	<1	<1		GREY SAND
SB - 52	7	<1.	<1		GREY SAND

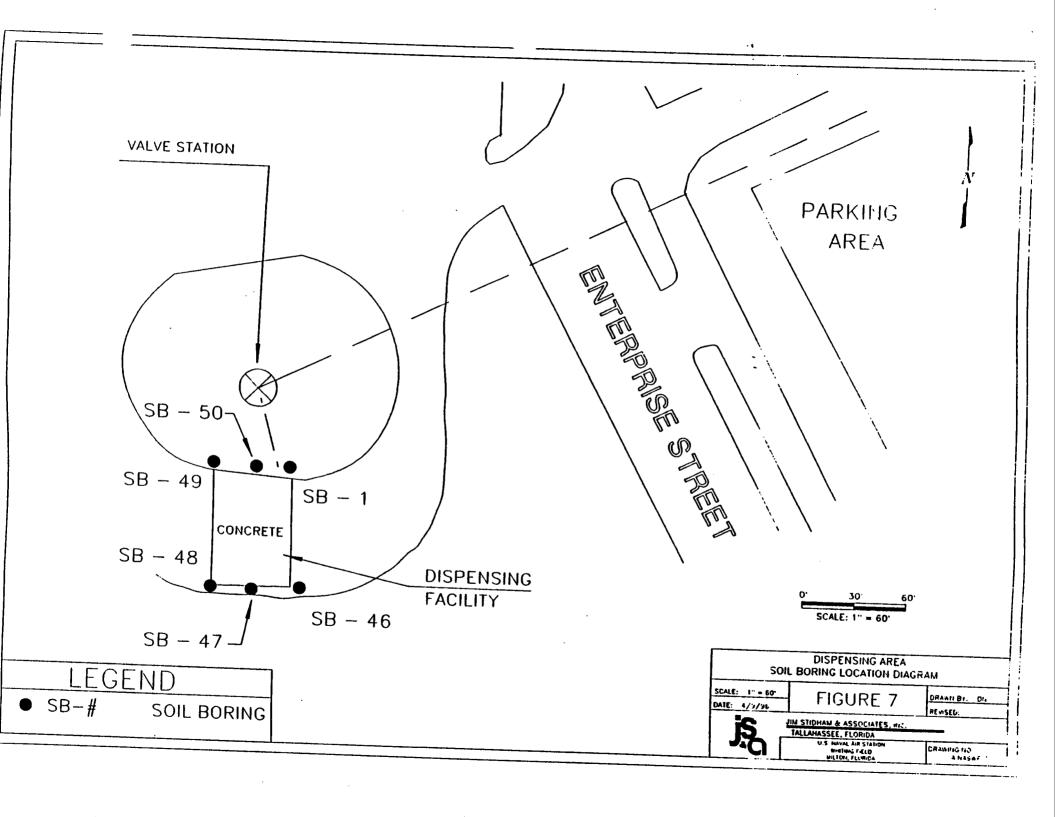

OVA - Organic Vapor Analyzer
- Biogenic Reading
- Total Volatile Hydrocarbons


PPM - Parts Per Million


SB - Soil Boring INV - Invalid














### APPENDIX A

Twin Towers Office Bidg. • 2600 Blair Stone Road • Tallahassee, Florida 32399-2400

( <del></del>	December	10	1990	
DER Acester				
		14	~~ · ·	707

## Closure Assessment Form

Owners of storage tank systems that are replacing, removing or closing in place storage tanks shall use this form to demonstrate that a system closure assessment was performed in accordance with Rule 17-761 or 17-762, Florida Administrative Code. Eligible Early Detectionate (EDI) and Reimbursement Program sites do not have to perform a closure assessment.

### Please Print or Type Complete All Applicable Blanks

The state of the s
1. Date:April 12, 1996
2. DER Facility ID Number: 578516386 3. County: Santa Rosa County
4. Facility Name: Whiting Field Naval Air Station
5. Facility Owner: Whiting Field, Naval Air Station
6. Facility Address: HWY 87 A, Milton, Florida 32570
7. Mailing Address: HWY 87 A, Milton, Florida 32570
8. Telephone Number: ( 904) 623-7181 9. Facility Operator: Whiting Field, NAS
10. Are the Storage Tank(s): (Circle one or both) A. Aboveground or B. Underground
11. Type of Product(s) Stored:
12. Were the Tank(s): (Circle one) A. Replaced B. Removed C. Closed in Place D. Upgraded (aboveground ta Number of Tanks Closed: Product line ONLY 14. Age of Tanks: N/A
Facility Assessment Information  Not Applicable  1. Is the facility participating in the Florida Petroleum Liability Insurance and Restoration Program (FPLIRF 2. Was a Discharge Reporting Form submitted to the Department?  If yes, When:  Where:  Escambia Co. Public Works  If yes, When:  Where:  Scambia Co. Public Works  If yes, When:  Where:  Scambia Co. Public Works  Are monitoring wells present around the storage system?  If yes, specify type:  Water monitoring Wells or within the excavation?  Were the petroleum hydrocarbon vapor levels in the soils greater than 500 parts per million for gasoline Specify sample type:  Vapor Monitoring wells  Specify sample type:  Vapor Monitoring wells  Soil sample(s)  Were the petroleum hydrocarbon vapor levels in the soils greater than 50 parts per million for diesel/kerd Specify sample type:  Vapor Monitoring wells  Specify sample type:  Vapor Monitoring wells  Soil sample(s)  Were the analytical laboratory results of the ground water sample(s) greater than the allowable state target (See target levels on reverse side of this form and supply laboratory data sheets)  If a used oil storage system, did a visual inspection detect any discolored soil indicating a release?  Are any potable wells located within ¼ of a mile radius of the facility?
11. Is there a surface water body within 1/4 mile radius of the site? If yes, indicate distance:

OCR form	17 781 200(1)
fem 14-	Closure Assessment Form
( 0.	December 10, 1920
~~	Ma
	there as an OFW

- 12. A detailed drawing or sketch of the facility that includes the storage system location, monitoring wells, buildings, storm drains, sample location and dispenser locations must accompany this form.
- 13. If a facility has a pollulant storage tank system that has both gasoline and kerosene/diesel stored on site, both EPA Method 602 and EPA Method 610 must be performed on the ground water samples obtained.
- 14. Amount of soils removed and receipt of proper disposal.
  - If yes is answered to any one of questions 5-9, a Discharge Reporting Form 17-761.900(1) indicating a suspected release shall be submitted to the Department within one working day.
- 16. A copy of this form and any attachments must be submitted to the Department's district office in your area and to the !coally administered of gram office under contract with the Department within 60 days of completion of tank removal or filling a tank with an inert material.

Signature of Owner Signature of Person Performing Assessment

PROJECT ENGINEER -BROCKMEIER.

Title of Person Performing Assessment

State Ground Water Target Levels That Affect A Pollutant Storage Tank System Closure Assessment

State ground water target levels are as follows:

- For gasoline (EPA Method 602):
  - a. Benzene

1 ual

h. Total VOA

50 ug/l

- Benzene
- Taluene
- Total Xvienes
- Ethylbenzene
- c. Methyl Test-Butyl

50 ug/l

Ether (MTBE)

- 2. For kerosene/desel (EPA Method 610):
  - a. Polynuclear Aromatic Hydrocarbons (PAHS) (Best achievable detection limit, 10 ug/l maximum)

**APPENDIX E** 

**SOIL BORING LOGS** 



## LOG OF BORING SBOI

Page | of |

DRILLING ROMANY: Are it in supplies Sup	DJECT NO: CTO 0037		PROJECT NAME: O: 1/water Seperato	
DRILLING METHOD: December of DP)  DRILLING RICE: SO-Z  DRILLING RICE: SO	OJECT LOCATION: NAS Whiting	Keld	DATE DRILLED: 11/18/97	1 Invistigation
DRILLING RELIGION DECEMBER: SO-Z  GEOLOGIC DESCRIPTION  Density/Consistency, Hardness, Color  WELL DIAGRAM  SP Send, Gellowish Diray, Mardian  Grained Some Silt, non plestre, and  Clay, light brown, mothful red and  Sold Sold Sold State of the sold	DRILLING COMPANY: Precision	Somoling		
DRILLING HIS: SU-2 GEOLOGIST: Great & Gooden  HELL DIAGRAM  BELL DIAGRAM	DRILLING METHOD: Direct Puch		BORING DIAMETER: 3 Inches	· · · · · · · · · · · · · · · · · · ·
SP Sind, Gillerit Diens, Another and Sens Silt, Non Plastic, and Sens Silty Sind, Plastic, and Sens Silty South States of States of Silty South States of States of States of Silty South States of St	DRILLING RIG: SU- Z		GEOLOGIST: Geral & Goode	
Send, yellows to Cronger, Fire to medium  grained Some Silt, non plastic, and  Clay, light brown, motified red and  white, Stiff, Slight plasticity,  moist, (Full like odor), gene  Fire to medium grained Sond  Seems  Silly Sond, light brown to reddish,  Fire to medium grained, low  plasticity Firey, woist  Sendy Clay, light reddish brown,  slightly plastic, medium stiff,  moist  End of Boring	DEPT feet SAMPI NUMBI BLOWS/ Sample B. Zone Borehole Drill B. Z.	USCS/ROD	GEOLOGIC DESCRIPTION	WELL DIAGRAM
30-	55-1 600 NO	SP Sind, Grained  SM Send, Grained  Clay, I's  White,  Moist,  Fine  Seem  Flostici  CL Slight  Moist	Minist Orong, Fine to medium d some silt, non plistic, not ht brown, mottled red and stiff, slight plackwith, (Fort like odor), gone to medium grained send s l, light brown to reddish, medium grained, low ty fina, moist l, light reddish brown, l, plackic, medium stiff,	



## LOG OF BORING SBOZ Page 1 of 1

PROJECT NO: CTO 0037		PROJECT NAME OUT & C	
JECT LOCATION: NAS W	uting Fell	PROJECT NAME: 0:1/Water Seperation  DATE DRILLED: 11)18197	of Invistigation
DRILLING COMPANY: Precis	ion Sempling	SURFACE ELEVATION: Feet	
DRILLING METHOD: Direct L	ush (DP)	BORING DIAMETER: 3 Inches	
DRILLING RIG: SO-Z		GEOLOGIST: Gerald Goode	
H H H Autitere	GRAPHIC LOG USCS/ROD	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color	WELL DIAGRAM
55-1 6c b NO/NO 55-2 6a b NO/NO 55-3 OP NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO/NO NO/NO NO/NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO/NO NO/NO NO/NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO/	CH Clay  SM Silly  SM Plas  Silly  SM Silly  SM Silly	gellonish Orange, medium ained, troce of finer, some isonic methor, soist by Sond, yellonish Orange, as to medium grained, slightly estic fines, west as 4'bls.  Sond, yellonish Orange, fine to linn grained, non plastic fines  I light teddish brown, mothed y and dock red, Medium stiff, this, moist  Sond, yellonish Orange, fine medium grained, non plastic  es, dry  End of Boring	



## LOG OF BORINGSBO3

SOUTHNAVFAC	LOG OF BORINGS	Page 1 of 1
PROJECT NO: CTO 0037	PROJECT NAME: 0:1/water Sepecator	Investigation
DRILLING COMPANY: Precision Sending	DATE DRILLED: 11/18/9/	
DRILLING METHOD: Direct Puch (60)	SURFACE ELEVATION: Feet BORING DIAMETER: 3 Inches	
DRILLING RIG: 50-Z	GEOLOGIST: Geral Goode	
Sample Sample Sample BLONS/FT. Sample	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color	WELL DIAGRAM
	Sond, yellowish Oringe, medium grained, some organics, trace of fines wet at 4'bls	
	to medium grained, Slightly plostic times, moist	
	lay, light reddish brown, mothld light brown and dork red, stiff, Slightly plishic, moist	]
20- C/	teddish brown,	1
25-	End of Boing	
30-		1
35—		
40-		



## LOG OF BORING SBOY

Page | of |

POJECT NO: CTO 0037 PROJECT NAME: 0:1/water Seperator Investigation OJECT LOCATION: NAS Whiting Field DATE DRILLED: 11/18/97 DRILLING COMPANY: Precision SURFACE ELEVATION: DRILLING METHOD: Direct Puch **BORING DIAMETER: 3 Inches** SO-Z-DRILLING RIG: GEOLOGIST: Gerald Goode **GEOLOGIC DESCRIPTION** œi WELL DIAGRAM Density/Consistency, Hardness, Color 55-1 GaD SP Sond, Gellowish Dronge, fine to medium grained, trace of fines, wet at 4'bls 10/1D cy Sondy Clay and Clay light reddish on Stiff, moist **SS-3** mo/ad NO NP 155-4 10-55-5 ٥رم Se Fine to medium grained, plastic fines js-6 Sondy Clay, light reddich brown, mothed light brown and gray, 20-End of Boring



## LOG OF BORING SBOS Page 1 of 1

PROJECT	NO: CTO O	037		1000 1000 1100	
PROJECT	LOCATION: 1	100 1.1.1.		PROJECT NAME: 0:1/water Seperate	1 Investigation
DRILLIN	G COMPANY: D	ma whitin	g Fiel	DATE DRILLED: "178747	7
		rect Push			
	RIG: 50- Z		<u>(ÞÞ)</u>	BORING DIAMETER: 3 Inches	
	Filtered		<del></del>	GEOLOGIST: Gerald Goode	
DEPTH feel SAMPLE NUMBER	BLOWS, Sample B. Zone	Borehole 110	GRAPHIC LOG USCS/ROD	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color	WELL DIAGRAM
55-1 55-2 55-3 55-4 10 55-6 55-7 20 55-8 35-9 25 30-	60 NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO NO/NO	WP	SP CL Sc	Sondy Gellowish Oronge, Fine to modium grained, troce of Fines, wet at 4' bls  Sondy Clay, light roddish brown  (Fuel staining From 5 to 6' bls,  Just like old present From 5 to 10' bls)  Slightly plostic, Soft, moist  Clayry Sond, light roddish brown,  Fine to medium grained, Fines slightly  Plastic  I'll Sonl, Gellowish to light brown  Fine to medium grained, slightly  Plestic Fines, moist  lay light brown, matthed  gray and white, soft  Moist  End of Boring	



# SOUTHNAVFAC

## LOG OF BORING SBOG

Page | of |

COJECT NO	CTO OC	037		10001505 11115	
JECT LO	CATION: 1	AS Whiting	c Enl	PROJECT NAME: 0:1/watel Sepecate	Investigation
ORILLING C	OMPANY: A	ecisjon	South		/
DRILLING ME	THUU:	ect Puch	(08)	SURFACE ELEVATION: Feet BORING DIAMETER: 3 Inches	
DRILLING RI	G: 50-Z		LPI)	GEOLOGIST: Gerald Goode	
	Filtered	(DDM)	(2)	DECEOSIST: Gara de Goode	
	Sample Sample B. Zone	Borehole Drill B. Z.	GRAPHIC LOG USCS/RQD	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color	WELL DIAGRAM
SS-7 GA OF SS-7 G	NO/NO	20	5m	Sond, Gellowish Orange, Fine to Medium grained, trace of Organics and Finos  Silty Sond, Gellowish Orange, Fine to medium grained, slightly plastic Finos, moist  Clay, light brown to reddish brown, Mottled light brown and dark  red, Medium Stiff, slightly plastic, moist  Silty Sond and Clay, Gellowish Orange, Clay soft, moist  End of Baring	



## LOG OF BORING SB-07 Page 1 of 1

SOUTHNAVFAC PROJECT NO: CTO 0037	LOG OF BORING SED 7 Page 1 of
DRILLING COMPANY: Precision Sampling DRILLING METHOD: Direct Puch (DP)  DRILLING RIG: 50-2	PROJECT NAME: 0:1/Water Seperator Investigation  DATE DRILLED: 11/18/97  SURFACE ELEVATION: Feet  BORING DIAMETER: 3 Inches
SAMPLE NUMBER BLOWS/FT. Sample Sample Borehole FIGO Borehole Sample Borehole S	GEOLOGIST: Gerald Goode  GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color WELL DIAGRAM
- 55-1 Gre NO/NO  - 55-2 Gre NO/NO  - 55-3 DP NO/NO  - 55-4 NO/NO  - 55-5 NO/NO  - 55-5 NO/NO  - 55-5 NO/NO  - 55-6 Senda Sti  - 55-1 Gre NO/NO  - 55-2 Gre NO/NO  - 55-3 DP NO/NO  - 55-5 NO/NO  - 55-5 NO/NO  - 55-6 Senda Significant Senda Signifi	and, yellowish Dronge, Fine to edium grained, trace of organies and Fines, weet at 4'bls  dy Clay, reddish brown, blocky  The to making graned,  lishth plastic Fine.  The Clay, reddish brown, mottled at brown and gray, soft,  st  sal of Bering
r= :imges	



## LOG OF BORING SBOB

Page | of |

TOJECT NO: CTO OC	27	<del></del>		
JJECT LOCATION: N	25 / h. L. c.	F. 11	PROJECT NAME: 0:1/water Seperator	Invaligation
DRILLING COMPANY: Q	recision So	FIE 18	DATE DRILLED: ///19/97' SURFACE ELEVATION: Feet	
DRILLING METHOD: Dir	ect Push 1	00)	SURFACE ELEVATION: Feet   BORING DIAMETER: 3 Inches	
DRILLING RIG: SO-Z		<u> </u>	GEOLOGIST: Gerald Goode	
Filtered PID			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DEPTI feet SAMPL NUMBE BLOWS/ Sample B. Zone	Borehole Communication of the	USCS/RaD	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color	WELL DIAGRAM
55-2 Gib wolno 55-2 Gib Nolno 55-3 DP Nolno -55-4 Nolno -55-5 Nolno -55-7 Nolno -55-8 Nolno -55-9 Nolno -55-9 Nolno -55-9 Nolno -55-9 Nolno	NO	ch Cla	d, yellowish Orange, medium grained siece of Finos, troce of Disposics, wet at 41bls  Ly Clay, yellowish Orange, block stiff, slight plocherit, moist  ig, light brown, mottled red and gray, modium stiff day there stains and fuel like odor)  Is Sond and clayry Sond, yellowish ange (plocks Finos), medium ange (plochs Finos), medium ange of day  ig and white, medium stiff  ig  End of Boing	



## LOG OF BORING SBO 9 Page 1 of 1

SOUTHNAVFAC	LOG OF BORING SB	1	
PROJECT NO: CTO 0037  PROJECT LOCATION: NAS Whiting Field  DRILLING COMPANY: Precision Sampling  DRILLING METHOD: Direct Push (DP)  DRILLING RIG: 50-Z	PROJECT NAME: 0:1/Water Seperator Investigation  DATE DRILLED: 11/19/97  SURFACE ELEVATION: Feet  BORING DIAMETER: 3 Inches		
SAMPLE NUMBER BLOMS/FT. Sample B. Zone Bridge Borehole Company	GEOLOGIST: Gerald Goode  GEOLOGIC DESCRIPTION  Density/Consistency, Hardness, Color	WELL DIAGRAM	
55-2 (go) 20/20 20 20 20 20 20 20 20 20 20 20 20 20 2	dy gellouish Orange, Fine to edium grained, wet at 4'bis  dy Clay yellouish Orange, locky, stiff, slightly plastic,  orst  light brown, mothed red and gray, medium stiff,  Sond and Clayry Sond, gellouish  orange, Fine to medium grains,  lastic Fines, moist  End of Boring		



## LOG OF BORING SB-10

Page | of |

	OJECT	NO:	CT	00	37				PROJECT NAME: 0:1/water Seperator Investigation	
	JJECT	LOCA	TION	1: 1/1	15 h	hiti	19	Fiel	DATE DRILLED: 11/19197	
	ILLING	COM	PANY	<u>:                                    </u>	eci	sion		nolin	SURFACE ELEVATION: Feet	
	ILLING			Dice	ct	Push		ÓP)		
DR	ILLING	RIG:		- Z					GEOLOGIST: Gerald Goode	
DEPTH	SE	BLOWS/FT.	Sample	B. Zone	Borehole 10	Oritt B. Z.	GRAPHIC LOG	USCS/Rad	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color WELL DIAGRAM	м
20-	55-1 55-2 55-3 55-4 55-6 55-8 55-9	6 1 P	19/550 19/550 19/550 19/550 19/550 19/550 19/550 19/550 19/550	~°		~D	6	Sc CL : 14	Sondy Clay, reddich brown, medium Shit, highly plastic, modeled 114th gray, day	

LOG OF BORING SBIZ SOUTHNAVFAC Page / of / D: CTO 0037 PROJECT NAME: 0:1/water Separator Investigation OCATION: NAS Whiting DATE DRILLED: 11/19/97 OMPANY: SURFACE ELEVATION: ETHOD: Direct DRI BORING DIAMETER: 3 Inches ig: 50- Z DRI GEOLOGIST: Goode PID (DOM) DEPTH feet -GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color WELL DIAGRAM Sond, Gellarish Orange, fine to Medium grained, trove of Fines, wet at 41 bls 10/10 Sondy Clay, yellowish Oronge, blocky, shiff, moist 50/209 ND 50/100 Sc Clayry Sond, reddishbrown fine grained, slightly planted innes, moist 10% ch clay, reddish brown, modium stiff slightly plastic, moist 10/25 20 Clay, brown, S. Ft, moist NO ~%o 25 And of Boring 30-35-40-



### LOG OF BORING SB13

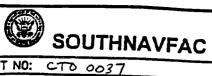
Page | of |

DIECT NO: CTO 0037 PROJECT NAME: 0:1/Water Seperator Investigation JJECT LOCATION: NAS Whiting Field DATE DRILLED: 11/19/97 DRILLING COMPANY: Precision SURFACE ELEVATION: DRILLING METHOD: Direct Push **BORING DIAMETER: 3 Inches** DRILLING RIG: 50-Z Filtered PID (DDM) Untilter GEOLOGIST: Gerald Goode GRAPHIC LOG BLOWS/FT SAMPLE NUMBER USCS/Rap B. Z. **GEOLOGIC DESCRIPTION** WELL DIAGRAM Density/Consistency, Hardness, Color Sond, Yellowish Orange, very fine to fine grained, trace of fires, wet at 41 bls 55-2 55-3 DP 10/2 Sondy Clay, Gellowich Orange, mottled light brown and gray, medium stiff, Slighth plackie, moist 55-4 00 000 M NO 55-5 NO/NO clay, reddish brown to pink, medium stiff, slightly plackse, NOND moilt End of Borry 20 25 30 35-4(



## LOG OF BORING SB-14

Page | of |


PI	ROJECT	NO: CT	0 00	37				I	377		
PF	ROJECT	LOCATIO	IN: NA	95 W	hitic	26	4	PROJECT NAME: 0:1/Water Sepecator	DATE DRILLED: 11/19/97		
U	HILLING	CUMPAN	Y: 14	ecis	ion	75.	nalis	SURFACE ELEVATION: Feet			
	RILLING		· Dic	ect 1	Oush		ĎΡ)	BORING DIAMETER: 3 Inches			
DF	RILLING		iltered					GEOLOGIST: Gerald Goode			
0EPTH		BLOWS/FT.	PID	Borehole 116	Drill B. Z.	GRAPHIC LOG	USCS/ROD	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color	WELL DIAGRAM		
10	55-4 55-4 55-6	.   1/25			vo .		ci	Sond, light brown, fine to medium grained, four of fines  Sond, Gellowish Orang Fine to medium grained, trove of two and organic matter/roots, wet at 4161s  Sondy Clay, reddish brown, very stiff, non-plestic, (Some silt soms)  day  Clay, reddish brown to pint, medium stiff, highly plostic, moist  End of Boring			

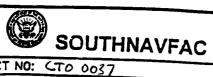


### LOG OF BORING SB-15

Page / of /

JECT NO: CTO 0037 PROJECT NAME: 0:1/water Seperator Investigation JECT LOCATION: NAS Whiting DATE DRILLED: 11/20197 DRILLING COMPANY: SURFACE ELEVATION: DRILLING METHOD: **BORING DIAMETER: 3 Inches** DRILLING RIG: 50-Z GEOLOGIST: PID (DDM) GRAPHIC LOG SAMPLE NUMBER Drill B. 2. **GEOLOGIC DESCRIPTION** Sample WELL DIAGRAM Density/Consistency, Hardness, Color Asphalt, Suitace to 3" bls 55-1 Sond, light brown to gellowich orange, fine to medium grained, trees of fines, moist 55-2 600 55-3 OP Sc Clarry Sond, gallowish Oronse, fine to madium grained, slightly plastic fines, moist 200 55-4 מעלים ~Q S er Sondy Clay, light roldish brown, method dock red and gray, medium Stiff, slightly planter, dry CInterloyered with Clayry Send Seems From 13 to 16' bls End of Boring 20 30. 35-4




## LOG OF BORING SB-16 Page 1 of 1

	PROJEC	T NO:	CT	0 00	37				DRO ISST NAME: OUT   A		
	PROJEC	T LOC	ATIO	N: 11	45 L	shiti	00	1	DATE DRILLED: 1//20197		
	DRILLIN	IG COI	PAN'	Y: P	ec	5,00	75.	100			
	DRILLIN			U:c	ect	Pust		DP)	SURFACE ELEVATION: Feet  BORING DIAMETER: 3 Inches		
14	DRILLIN	G RIG						<del>. E ( ) .</del>	GEOLOGIST: Gerald Goode		
DEPTH		-	Sample	B. Zone	Borehole + 0	Drill B. Z.	GRAPHIC LOG	USCS/RaD	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color WELL DIAG	GRAM	
10-	- 55-3 - 55-5 - 55-5 - 55-L		20/20 20/20 20/20 20/20 20/20	<b>j</b> 1		NO.	-	a	Asphalt, Suitere to 3" bls Sond, light brown, fine to Medium grained, freer of fiers, day Sond, Gellowich Orange, firsto medium grained, stephthy plastic First, day Sondy Clay, reddish brown, mottled light brown, pink, and gray, blocky, Medium Shott, Slightly plastic, day Clay, reddish pink, mottled dark red, light brown, and gray, Medium Shott, plastic, day End of Boring		



## LOG OF BORING SEOI

SOUTHNAVELS	LOG OF BORING SEOI	
SOUTHNAVFAC		Page   of
DRILLING RIG: 60.27  DRILLING RIG: 60.22  DRILLING RIG: 60.22	DATE DRILLED: 11/20/97	Investigation
DRILLING METHOD: Occasi O Sampling Inc	SURFACE ELEVATION: Feet	
F DE L'Aprillered 00 0	GEOLOGIST: Gerald Goode	
SAMP NUMB BLOWS, Bample Borehole Orill B. Z. GRAPHIC	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color WE	LL DIAGRAM
55-2 60 NO/NO NO NO CL da NO/NO NO NO NO CL da NO/NO NO N	d, light brain to gellowish Oronge, ne to medium grained, organize after and routs, trace of Fines, and Clay, reddish brown, modfled ork red, light brown, and gray redium stiff, slightly placke, day recognized Clayry Sond Seam) ry Sond, reddish brown, I me to redium grained, plastic Fines, ry Decognized Sondy Clay Seam) of Boring	JAGNAM .



## LOG OF BORING SEOZ Page 1011

PROJECT NO. (To a co	Page   of
PROJECT NO: CTO 0037	DATE DRILLED: 11/2019) Invotigation
PROJECT LUCATION: NAS Whiting Fix /d	DATE DRILLED: 11/20/97 Tslord) Investigation
PROJECT LOCATION: NAS Whiting Firld DRILLING COMPANY: Precision Sempling Inc	SURFACE ELEVATION: Feet
Direct Push ( DP)	BORING DIAMETER: 3 Inches
PID toom	GEOLOGIST: Gerald Goode
SAMPLE NUMBER BLOWS/FT. Sample Sample Brehole Head Brehol	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color WELL DIAGRAM
10 - 55-5 NO/NO NO NO PI	dy Clay, reddish brown,  offled dork red, light brown,  offled dork red, light brown,  stic, dry
25—	
40-	



### LOG OF BORING SBO 3

		INAV	/FAC	LOG OF BURING SEC	3   Page 1 of /
L PPOJECT N	0: CTO 00	37		PROJECT NAME: 2	
JECT LO	OCATION: N	as whiten	a Field	DATE DRILLED: 11/20/97	Slend) Investigation
DRILLING C	OMPANY: H	ecision (	Somolino I	SURFACE ELEVATION: Feet	
DRILLING R	COMPANY: HETHOD: Ox	ret Pust	100	P) BORING DIAMETER: 3 Inches	
DRILLING	10. 511-	/		GEOLOGIST: Gerald Goode	
DEPTH feet SAMPLE NUMBER	Sample Sample B. Zone	Borehole (Mado)	GRAPHIC LOG USCS/ROD	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color	WELL DIAGRAM
55-1 6 55-3 D 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W0/20	~0	CL	Send, light brown, fine to medium grained, trove of organics, trove of fines, wet at 41 bls  endy clay, reddish brown, mothly donk red, light brown, and gray, medium stiff, slightly plustre, dry  layery Sond, reddish brown, fine to rines, day - End of Boring	



## LOG OF BORING SB-04

Page | of |

PROJECT NO: CTO 0037	<del>  _</del>	SOUTH AVEAU								Page   of
DRILLING RIGH: SO-2  DRILLING RIGH: SO-2  E B B B B B B B B B B B B B B B B B B										PROJECT NAME: Palation (O )
DRILLING METHOD. Decre Park  DRILLING METHOD. Or Over Park  DR		RUJEC I	LUCA	1101	V: 4/2	15 U	hitra	F:	11	DATE DRILLED: 11/20/97 Tsload) Townshigation
GEOLOGIST: Great Goods  GEOLOG		TILLING	MET	PANY	: \ <del>K</del>	<u>e Cis</u>	100	50.00	ling I	Inc SURFACE ELEVATION: Feet
GEOLOGIST: Great Goods  GEOLOG	100	TILL TAIG	DIC:	<u> </u>	Dic	rct	Pus L	<u> </u>	00	(DP) BORING DIAMETER: 3 Inches
SS-1 OF NOTICE OF SIGNAL AND SIGNAL AND NOTICE OF SIGNAL AND S		TLL IIVO	1							000000000000000000000000000000000000000
5-5-7 OP Who  Sondy Clay, relation brown, method  10-55-5  NOTE OF WHO  Sondy Clay, relation brown, method  1154 brown and gray, median Shift,  Sightly place, dry  Clayry Sond, relation brown,  The sond method  Clayry Sond, relation brown,  The sond method  Sondy Clay, relation brown,  Sightly place,  Sondy Clay, relation brown,  Sondy Clay, relation brown,  Sightly place,  Sondy Clay, relation brown,  Sightly place,  Sondy Clay, relation brown,  Sondy C	DEPTH feel	1	1	Sample	B. Zone	Borehole 19	Orii 8. 2. 5	GRAPHIC LOG	USCS/ROD	
	10 15 20 25 30 30	55-1 55-2 55-3 55-4	85 PO P	20/20 10/20 10/20	αi		~0		58	Sond, light brown to gettouish Osonge, fine to medium grained, trace of fines, wet at 4'bls  Sondy Clay, reddish brown, mottled light brown and gray, medium shot, slightly plante, dry (Occosional Sond Soom)  Clayry Sond, reddish brown, fine to medium grained, plastic  Fines, dry



## LOG OF BORING SBOS Page 1 of 1

PROJECT NO: CTO 0037			
FECT LOCATION		PROJECT NAME: Product Line (Dispense	( Island) Investigation
LING COMPANY: He cision	og Field	DATE DRILLED: 1//20/97	
DRILLING METHOD: Direct Pus	Dougling Inc	SURFACE ELEVATION: Feet	
DRILLING RIG: 50-2		BORING DIAMETER: 3 Inches   GEOLOGIST: Geold Goode	
Hitere of Pin San	10	1 950500131. 620 (3 6003E	
SAMP NUMBI BLOWS, Sample B. Zone Borehole		GEOLOGIC DESCRIPTION ty/Consistency, Hardness, Color	WELL DIAGRAM
55-1 LOVE NOWN NO	Sondy Clay  CL dork red,  Medium St  Scons, Jim  true of Co	gray, and light brown,  iff, dry (charge sond  to medium grand with  posse grains)  d, reddish brown,  edium grained, slightly  dry	



### LOG OF BORING SB-06

Page 1 of 1

PROJECT NAME: Product Line (Dispense / Island) Investigation PROJECT NO: CTO 0037 PROJECT LOCATION: NAS Whiting Fir / DATE DRILLED: 11/20/9 DRILLING COMPANY: Hecision SURFACE ELEVATION: DRILLING METHOD: Disret OCDP) BORING DIAMETER: 3 Inches DRILLING RIG: 50-2 BLOWS/FT. GEOLOGIC DESCRIPTION Sample WELL DIAGRAM Density/Consistency, Hardness, Color 55-1 600 00/10 Send, light brown to yellowish Drenze, fine to medium grained, trace of organics and fines, wet at 41 61s 55-2 Grab 55-3 Sondy Clay and Clayery Sond, mosseld 10/100 dock red and light brown (fuel 55-4 String - gray and full like odors from I to sot bis) medien shitt, day 90/400 00 20 55-5 20/300 15- SS-L 20/50 55-7 15/500 Se grained, plastic Fines, day 04 - 35-8 NO/4 55-9 NON End of Boring 30-35-40-



## LOG OF BORING SBO7 Page 1 of 1

SOUTHNAVFAC  LOG OF BORING 5807 Page 1011  PROJECT NO: CTO 0057  FECT LOCATION: ASS Within 51-11  DATE DRILLED: 1/21/97  DRILLING ROPEANY: Ass Within 51-11  DRILLING ROPEANY: Ass Within 51-11  DRILLING RIG: 50-2  THE COMPANY: Ass Within 51-11  THE COMPANY: A
DATE DEATLING MASS Whiting Dirly  DATE DRILLING COMPANY: Recision Supplies Town  DRILLING RECIPION Street Park  DRILLING RIG: SO-2.  DR
DRILLING COMPANY: Recision Stratus Trace SURFACE ELEVATION: Feet  DRILLING METHOD: Oxered Park of COP) BORING DIAMETER: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$ Inches  DRILLING RIG: \$0-2  DRILLING RIG: \$0-2  DRILLING RIG: \$
DRILLING METHOD: Server Print O COP)  BRINDING RIG: SO-2  FILE BY THOSE OF THE STATE OF THE STAT
DRILLING HIG: 50-2  GEOLOGIST: Grad Goods  GE
Hard Strain Stra
Send Clay, reduith brown, and gray motion shift, slighth prome and gray motion shift, slighth prome, and gray motion shift, slighth plantactory and shift plantactory. Here are a shift plantactory and shift plantactory and shift plantactory and shift plantactory. Here are a shift plantactory and shift plantactory and shift plantactory and shift plantactory. Here are a shift plantactory and shift plantactory and shift plantactory and shift plantactory. Here are a shift plantactory and shift plantactory
155-2 by Moho  -55-3 OP  NO/NO



## LOG OF BORING SBOR Page 1 of/

PF	ROJECT	NO:	CTO	003	7				PROJECT NAME: Roduct Line (Dispense	v Tel 1 To al 1
							Fir	11	DATE DRILLED: 1/21/97	( LS load) LAUSTIGATIO
DF	DRILLING COMPANY: Recision Simpling Inc DRILLING METHOD: Direct Public OCOP)							ijo J	SURFACE ELEVATION: Feet	
DF	DRILLING METHOD: Direct Push (CDP)							00	DP) BORING DIAMETER: 3 Inches	
DF	ILLING	RIG:	- 5	0-2	2		<del>,</del>	-,	GEOLOGIST: Gerald Goode	
ОЕРТН	SAMPLE	BLOWS/FT.	Sample	B. Zone	Borehole 130	Orill B. Z. 6	GRAPHIC LOG	USCS/Rad	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color	WELL DIAGRAM
10-	- 55-1 - 55-2 - 55-3 - 55-4 - 55-6	6 1 OP	20/20 20/20 20/20 20/20 20/20			2P	Ì		Sond, light brown to yellowish Orange, Fine to medium grained, trace of Fines, dry  Sondy Clay, reddish brown, mottled light brown, desk red, and gray, slightly plisher, medium stiff, dry  Clayry Sond Soms, fine to medium grained from 13 to 16'61's  End of Boring	



### LOG OF BORING SGO 9

Page | of |

PROJECT NO: CTO 0037 JECT LOCATION: NAS Whiting Field

THE COMPANY: Recision Simpling PROJECT NAME: Product hime (Dispuser Island) Investigation DATE DRILLED: UNILLING COMPANY: Recision 11/21/97 SURFACE ELEVATION: DRILLING METHOD: Dispet Push BORING DIAMETER: 3 Inches DRILLING RIG: 50-2 GEOLOGIST: Geal SAMPLE NUMBER GEOLOGIC DESCRIPTION æ WELL DIAGRAM Density/Consistency, Hardness, Color 55-1 Greb Sond, light brown to gellowish orange, fine to medium grained, wet at 4'bls NO/NO 55-2 Geb 55-3 Sondy Clay, yellouish orange and an Feldish brown medium stiff 55-4 C2 slightly plastic, moist fuel staining - gray and fuel like odors from 7 to 10'6/s 55-5 -6 55-7 ~\\°\>0 clayery Sond, reddish pink, was fine to Fine grained, slightly playtic fines, 20-20 55-8 20/3 Clay, gray, soft, highly plantic, 55-9 CH v0/2 5510 Se Sond and Clayery Sond, light brown to white, fine grained, highly plostice for fine to NO/~\$ 30 medium grained and highly Compacted at 27' 615 where Diger refresal is encountered - End of Boring



# LOG OF BORING SB-10

Page | of |

PROJECT NO: CTO 0037		PROJECT NAME: Product Line (Dispense I Island) Investigation
PROJECT LOCATION: NAS White	100 E:- 11	DATE DRILLED: 11/21/97
DRILLING COMPANY: Recision		SURFACE ELEVATION: Feet
DRILLING METHOD: Disrect Pa		DP) BORING DIAMETER: 3 Inches
DRILLING RIG: 50-2	<u> </u>	GEOLOGIST: Gerald Goode
S/FILE (DDM)	GRAPHIC LOG USCS/RGD	GEOLOGIC DESCRIPTION WELL DIAGRAM Density/Consistency, Hardness, Color
55-1 6cc NO/10 55-2 6cc NO/10 55-3 OP NO/10 55-5 NO/100 NO	,o	Medium stiff, day  End of Boring



### LOG OF BORING SE-17

Page / of /

PROJECT NO: CTO 0037 PROJECT NAME: Product Line (Dispusser Island) Investigation JECT LOCATION: NAS Whiting Fir DATE DRILLED: 11/21/9 DHILLING COMPANY: SURFACE ELEVATION: DRILLING METHOD: Disret P. BORING DIAMETER: & Inches 50-2 DRILLING RIG: GEOLOGIST: George BLOWS/FT. Orill 8. Z. GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color WELL DIAGRAM 55-1 Gab Asphalt surface to 4" bls Send, light brown to gellowish Orange, 55-2 Gal fire to medium grained, trace of fines, moist NO/NO 55-3 DP NO/NO CC Sondy Clay reddish brown, mottled light brown to gray, medium stiff, Slightly plastic, day 55-4 ON DW/BW NO 45-5 MOIND NO/NO. End of Boing 20 25 30



# LOG OF BORING SB72 Page ( of )

PROJECT NO: CTO 00	THNAVFAC	LOG OF BORING SB	12   Page ( 01 /
PROJECT LOCATION:	AS Whiting Field	DATE DRILLED: 11/21/97	Island) Investigation
DRILLING COMPANY: 14	ecium 6	SURFACE ELEVATION: Feet	
Distance in the strong Dist	Pet Push ( O)	BORING DIAMETER: 3 Inches	
DRILLING RIG: 50-	2	GEOLOGIST: Gerald Goode	
SAMPLE NUMBER BLOWS/FT. Sample	Borehole (190) Drill B. 2. A GRAPHIC LOG USCS/ROD	GEOLOGIC DESCRIPTION Density/Consistency, Hardness, Color	WELL DIAGRAM
55-1 Gab wo/no 55-2 Gab NO/NA	5R 5.	and, fine to medium grained, trace of fines, dry	
10 - 55-4 20/400 NO	no CT 20	indy Clay, reddish brown, mottled light gray and light brown, Stiff slightly placks	
15-55-6 W woho	SC C/2	Fuel stains from 5 to 8'bls  Fuel like odors from 5 to 10'bls  14-14 Sond, teddish brown, fine to medium grained, slightly plostic  Fines	<b>1</b>
20-		Fines, dry End of Boring	1
25-			1
30-			
35-			
			<del>-</del>
			1



### LOG OF BORING SBO 1

Page | 01 |

JECT LOCATION: VAS whiting Field DATE PRILLED: 11/25/97  DRILLING COMPANY: Precision Sending Inc. SURFACE ELEVATION: Feet  DRILLING METHOD: Creat Past DP) BORING DIAMETER: 3 Incnes  DRILLING RIG: 50-2  FIFTING COMPANY: Precision Sending Inc. SURFACE ELEVATION: Feet  DRILLING MEG: SO-2  FIFTING COMPANY: Precision Sending Inc. SURFACE ELEVATION: Feet  DRILLING MEG: SO-2  FIFTING COMPANY: Precision Sending Inc. SURFACE ELEVATION: Feet  DRILLING MEG: SO-2  FIFTING COMPANY: Precision Sending Inc. Surface ELEVATION: Feet  DRILLING MEG: SO-2  FIFTING COMPANY: Precision Sending Inc. Surface ELEVATION: Feet  DRILLING MEG: SO-2  FIFTING COMPANY: Precision Sending Inc. Surface Inc. S	<del>  _</del>	COUNCINO: CTO 0017											01 /
DRILLING COMPANY: Precision Sunding Inc. SURFACE ELEVATION: Feet  DRILLING METHOD: Detect Pash I DP)  BORING DIAMETER: 3 Inches  BORING DIAMETER: 3 Inches  BORING DIAMETER: 3 Inches  GEOLOGIST: Getal & Conde  GEOLOGIST: Getal		JECT NO: CTO 0037								7	1648	PROJECT NAME: Progret bigs (TP-5 Pung House) Tourse	+.
DRILLING RIG: 50-2  Filters Grand  BORING DIAMETER: 3 Inches  GEOLOGIST: Getall Geode  Filters Grand  GEOLOGIST: Getall Geode  Filters Grand  GEOLOGIST: Getall Geode  GEOLOGIST: Getall Geode  Filters Grand  GEOLOGIST: Getall Geode  GEOLOGIST: Get		DRILLING COMPANY: Described								<u>1                                    </u>		DATE DRILLED: 11/23/97	54870-1
BRILLING RIG: SD-2  Filtrick Comments  BY ST		DRILLING METHOD: Dearly D.								16	Inc.	<del></del>	
## BELL DIAGRAM    Second Density/Consistency, Hardness, Color   Hell DIAGRAM	DE	DRILLING METHOD: Direct Push 1 DPS								<u>~</u>			
Density/Consistency, Herdness, Color  MELL DIAGRAM  Density/Consistency, Herdness, Color  MELL DIAGRAM  MILL DIAGR		1	T	File	leced	<del>-</del>		_	_	-		GEOLOGIST: Gerald Goode	
Sold Sond, light beam, fine grained, plastre fines, fuel like oder (slight oder) and staining, west from 4 to 5' ble  Sondy Clay and Clay, reddish brown modified dock and (Clay unit is light gray, medium stiff, plastre) modium shiff, plastre, maist  Clayer Sond, yellowish brown sch, fine to medium grained (slight fines, dry Sond, While, fine to medium grained, trace of dark minerals and fines, day  Sond, While, fine to Coarse grained trace of dark minerals and fines, dry	DEPTH (PP)	SAMPLE	BLOWS/FT.	Sample	Zon	Borehole 110	Orill B. Z.	GRAPHIC LOG	USCS/ROD		Density	GEOLOGIC DESCRIPTION y/Consistency, Hardness, Color WELL DIAGRAM	
35-	20-	55-1 55-2 55-3 55-4 55-5	5 15 A PP)	20/250 25000 25000 25000 25000	₩P		~0		SM CLJ CH SC	Sill Prob Sandra	Sond of Sond o	plastic fines, moist  ght brown, fine grained,  rs, fuel like oder (slight  itaining, west from 4 to 5'  and Clay, reddish brown  it red, (Clay unit is light  m stiff, plastic) modium  tic, moist  Yellawish Orange ord  to medium grained, (slight  lor and steins), plastic  fine to medium grained,  dark minerals and fines,  Time to Coarre grained	



## LOG OF BORING SBO2 Page of

PROJECT LOCATION: As Whiting Field DATE PROJECT NAME: Red Line (TD-T Peop Black) Envertigal DATE DELLING COMPANY: Precision Singling Tree. SURFACE ELEVATION: Feet DRILLING RIG: SD-Z  DRI	SOUTHNAVFAC PROJECT NO: CTO 2017	LOG OF BORING SBOZ Page of
DRILLING METHOD: Describing Supplies Inc. SUPFACE ELEVATION: Feet  DRILLING METHOD: Describing Sp. 7  ENGLISHED CONTROLLING Sp. 7  ENGLISH Sp. 7  ENGLISHED CONTROLLING Sp. 7  ENGLISHED CONTROLLING Sp. 7  ENGLISH Sp. 7  ENGLISHED CONTROLLING Sp. 7  ENGLISH Sp. 7  EN	PROJECT LOCATION: 7648	PROJECT NAME: Progret Line (TR = 0 1)
DRILLING RIG:    Solution   Solut	DRILLING COMPANY: D	DATE DRILLED: 11/03/97
DRILLING RIG:    Solution   Solut	DRILLING METHOD: O Sengling Inc.	SURFACE ELEVATION: Feet
GEOLOGIST: Geral & Condense of	The same of the sa	BORING DIAMETER: 3 Inches
SS-1 Proposed and the state of	1 50 Z	
55-2 proportion of the state of	Sample Sa	GEOLOGIC DESCRIPTION
	55-1 grab may  55-2 grab may  55-3 DP may  55-5  55-3 DP may  10  55-5  MO  10  55-5  MO  10  10  10  10  10  10  10  10  10  1	gellowich Oconge, fine grained,  Fines, moist  light brown fine grained,  m 4 to 51 bls  find, reddish brown to light  fine grained, plosher Fines,  and Cloy, raddish brown,  art redimedium stiff,  fines, (Clay onit is light grown,  tiff and slighty ploshie) moist  ile and reddish brown,  medium grained, treer of  noist



### LOG OF BORING SB-03

SOUTHNAV	FAC	LUG OF BURINGS	8-03   Page   of
PROJECT NO: CTO 0037	7648	PROJECT NAME: Project him (The	
JECT LOCATION: NAS Whiti	ne Firl	DATE DRILLED: 1/23/97	- Pump House Investigation
DRILLING COMPANY: Possies	V I T	SURFACE ELEVATION: Feet	
DRILLING WEIHOU: Direct Pus	L / DPY	BORING DIAMETER: 3 Inches	
DRILLING RIG: 50-2		GEOLOGIST: Gerald Goode	
Sample Sample Sample Sample Sample Sample But Some Sample Borehole Not But Strain But St	GRAPHIC LOG USCS/ROD Densit	GEOLOGIC DESCRIPTION y/Consistency, Hardness, Color	WELL DIAGRAM
55-1 60 NO	Sc Clayey Sond, grained, 4+05' bl.  CL Sondy Clay, dank red, moist  Clay, light of and donk  Sond, while fire to modi	Howish Dronge, Fine  reddish brown, Fine  plocker Fines, wet From  reddish brown, mottled  medium Stiff, slightly plostic,  groy, mottled light brown  ted, Medium Stiff, moist  end reddish brown,  um grained. plastic Fines,  Fine to medium grained,  dark minerals and  Boring	



## LOG OF BORING SBOY Page 101)

SOUTHNAVFAC LOG OF BORI	NG SBOY Page 1011
PROJECT NO: CTO 0037 7648 PROJECT NAME: Q. J. L. /	ine (JP-5 Pomp Horse) Investigato
PROJECT LOCATION: NAS Whiting Field DATE DRILLED: 11/23/9	7
DRILLING METHOD: Oca Description Inc. SURFACE ELEVATION: F	eet
DRILLING RIG: (0) BORING DIAMETER: 3 Inche	?\$
Fillogia GEOLOGIST: Geral Co	000
GEOLOGIST: Gecal Con Control C	WELL DIAGRAM
55-2 who works  55-2 who works  55-3 DP  55-3 DP  55-4  10  55-5  55-6  10  10  55-7  10  10  10  10  10  10  10  10  10  1	ish is the second of the secon
TAMBER	



## LOG OF BORING SBOS Page | of |

#### **APPENDIX F**

## HEADSPACE METHODOLOGY FOR DETERMINING SOIL ORGANIC VAPOR CONCENTRATIONS

### HEADSPACE METHODOLOGY FOR DETERMINING SOIL ORGANIC VAPOR CONCENTRATION

Soil headspace readings where obtained utilizing the following method which conforms to the requirements of Rule 62-770.200(2), FAC.

Two 16 ounce glass soil jars were half-filled with soil sample (duplicate samples). The soil jars were then sealed utilizing "mason jar" type open top screw on caps with foil in place of the conventional solid jar tops. The soil samples were allowed to equilibrate to ambient temperature which was within the FDEP temperature range.

The samples were tested with a Foxboro Century 128, an organic vapor analyzer (OVA) equipped with a flame ionization detector (FID). Prior to each days activities, the OVA was field calibrated with 100 ppm methane in air, in accordance with the manufacturers specifications. Sample testing was performed by inserting the OVA probe through the foil sample cover and recording the highest OVA reading. Following collection of this OVA reading, the OVA was fitted with a granular activated carbon filter probe. The OVA was then used to test the headspace above the duplicate sample. Carbon absorbs petroleum hydrocarbons and thus the filtered reading is assumed to represent naturally occurring organic vapors.

Upon completion of the screening exercise, the carbon filtered result was subtracted from the unfiltered result, to obtain a net petroleum vapor value. In accordance with Rule 17(62)-770.200(2), FAC, and Guidelines for Assessment and Remediation of Petroleum Contaminated Soil (May 1994) corrected headspace levels in excess of 50 ppm is defined as "excessively contaminated soil" for diesel contaminated soil. Corrected headspace levels in excess of 10 ppm but less than 50 ppm are considered as contaminated, though not excessively contaminated.

### **APPENDIX G**

PRE-BURN SOIL LABORATORY DATA SHEETS



Quanterra Incorporated 5910 Breckenridge Parkway, Suite H Tampa, Florida 33610

813 621-0784 Telephone 813 623-6021 Fax

### ANALYTICAL REPORT

PROJECT NO. 7648

(NAS) Whiting Field

Lot #: B8B110133

Paul Calligan

QUANTERRA INCORPORATED

Certification Numbers: E84059, HRS84297

FDEP CompQAP: 870270G

Nancy Robertson

Project Manager



		MO	Penartine I i	•.
		<u>MDL</u>	Reporting Lim	<u>ut</u>
FL-DEP FL-PRO				
Total Petroleum Hydrocarbons	Q743	3.5 mg/kg	10.0 mg/kg	
SW846 6010A				
Arsenic	7440-38-2	0.013 mg/L	5.0 mg/L	TCLP(1311) -> METALS, TO
Barium	7440-39-3	0.001 mg/L	100.0 mg/L	TCLP(1311) -> METALS, TO
Cadmium	7440-43-9	0.0029 mg/L	1.0 mg/L	TCLP(1311) -> METALS, TO
Chromium, Total	7440-47-3	0.002 mg/L	5.0 mg/L	TCLP(1311) -> METALS, TO
Copper	7440-50-8	1.0 mg/L	1.0 mg/L	TCLP(1311) -> METALS, TO
Lead	7439-92-1	0.014 mg/L	5.0 mg/L	TCLP(1311) -> METALS, TO
Nickel	7440-02-0	2.0 mg/L	2.0 mg/L	TCLP(1311) -> METALS. TO
Selenium	7782-49-2	0.069 mg/L	1.0 mg/L	TCLP(1311) -> METALS, TO
Silver	7440-22-4	0.0038 mg/L	5.0 mg/L	TCLP(1311) -> METALS, TO
Zinc	7440-66-6	1.0 mg/L	1.0 mg/L	TCLP(1311) -> METALS, TO
Arsenic	7440-38-2	0.0029 mg/L	1.0 mg/L	Trace ICP
Соррег	7440-50-8	0.0025 mg/L	1.0 mg/L	SPLP-W(1312) -> METALS, T
Zinc	7440-66-6	0.012 mg/L	2.0 mg/L	SPLP-W(1312) -> METALS, T
Aluminum	7429-90-5	1.3 mg/kg	10.0 mg/kg	
Antimony	7440-36-0	0.097 mg/kg	0.5 mg/kg	Trace ICP
Antimony	7440-36-0	0.65 mg/kg	6.0 mg/kg	
Arsenic	7440-38-2	0.12 mg/kg	0.25 mg/kg	Trace ICP
Arsenic	7440-38-2	0.55 mg/kg	25.0 mg/kg	
Barium	7440-39-3	0.048 mg/kg	5.0 mg/kg	
Beryllium	7440-41-7	0.05 mg/kg	0.5 mg/kg	_
Cadmium	7440-43-9	0.05 mg/kg	0.5 mg/kg	_
Calcium	7440-70-2	2.9 mg/kg	100.0 mg/kg	
Chromium, Total	7440-47-3	0.085 mg/kg	1.0 mg/kg	
Cobalt	7440-48-4	0.52 mg/kg	2.5 mg/kg	
Copper	7440-50-8	0.37 mg/kg	2.5 mg/kg	
Iron	7439-89-6	1.1 mg/kg	5.0 mg/kg	
Lead	7439-92-1	0.079 mg/kg	0.25 mg/kg	Trace ICP
Lead	7439-92-1	0.4 mg/kg	2.5 mg/kg	
Magnesium	7439-95-4	1.1 mg/kg	100.0 mg/kg	
Manganese	7439-96-5	0.068 mg/kg	1.0 mg/kg	
Molybdenum	7439-98-7	0.1 mg/kg	5.0 mg/kg	
Nickel	7440-02-0	0.4 mg/kg	2.5 mg/kg	
Potassium	7440-09-7	13.0 mg/kg	100.0 mg/kg	
Selenium	7782-49-2	0.16 mg/kg	0.25 mg/kg	Trace ICP
Selenium	7782-49-2	2.4 mg/kg	25.0 mg/kg	
Silver	7440-22-4	0.14 mg/kg	1.0 mg/kg	
Sodium	7440-23-5	1.1 mg/kg	100.0 mg/kg	
Strontium	7440-24-6	0.1 mg/kg	5.0 mg/kg	
Thallium	7440-28-0	1.3 mg/kg	5.0 mg/kg	•
Thallium	7440-28-0	0.21 mg/kg	0.5 mg/kg	Trace ICP
Tin	7440-31-5	0.57 mg/kg	5.0 mg/kg	
Titanium	7440-32-6	0.093 mg/kg	5.0 mg/kg	
Vanadium	7440-62-2	0.099 mg/kg	2.5 mg/kg	
Zinc	7440-66-6	1.4 mg/kg	2.0 mg/kg	
SW846 7471A	7420.07.6	0.0058 mg/kg	0.1 mg/kg	
Mercury	7439-97-6	O'OO'S HRAKE	mg/kg	
SW846 8010B			• •	
Benzyl chloride	100-44-7	1.2 ug/kg	5.0 ug/kg	
Bromobenzene	108-86-1	1.1 ug/kg	2.0 ug/kg	



Services				
		<u>MDL</u>	Reporting Limit	
Bromodichloromethane	75-27-4	1.0 ug/kg	2.0 ug/kg	
Bromoform	75-25-2	0.65 ug/ <b>kg</b>	2.0 ug/kg	
Bromomethane	74-83-9	0.73 ug/kg	2.0 ug/kg	
Carbon tetrachloride	56-23-5	0.68 ug/kg	2.0 ug/kg	
Chlorobenzene	108-90-7	0.67 ug/kg	2.0 ug/kg	
Chloroethane	75-00-3	0.68 ug/kg	2.0 ug/kg	
2-Chloroethyl vinyl ether	110-75-8	0. <b>77 ug/kg</b>	5.0 ug/kg	
Chloroform	67-66-3	0.95 ug/kg	2.0 ug/kg	
Chloromethane	74-87-3	0.91 ug/kg	2.0 ug/kg	
Chlorodibromomethane	124-48-1	0. <b>82 ug/kg</b>	2.0 ug/kg	
Dibromomethane	74-95-3	0.71 ug/kg	2.0 ug/kg	
1.2-Dichlorobenzene	95-50-1	1.0 ug/kg	2.0 ug/kg	
1,3-Dichlorobenzene	541-73-1	1.0 ug/kg	2.0 ug/kg	
1.4-Dichlorobenzene	106-46-7	1.1 ug/kg	2.0 ug/kg	
Dichlorodifluoromethane	75-71-8	0. <b>66 ug/kg</b>	2.0 ug/kg	
1.1-Dichloroethane	75-34-3	0.74 ug/kg	2.0 ug/kg	
1.2-Dichloroethane	107-06-2	0. <b>85 ug/kg</b>	2.0 ug/kg	
1.1-Dichloroethene	75-35-4	0.71 ug/kg	2.0 ug/kg	
cis-1,2-Dichloroethene	156-59-2	0.9 ug/kg	2.0 ug/kg	
trans-1.2-Dichloroethene	156-60-5	0.67 ug/kg	2.0 ug/kg	
Methylene Chloride	75-09-2	0. <b>83 ug/kg</b>	5.0 ug/kg	
1,2-Dichloropropane	78-87-5	0.9 ug/kg	2.0 ug/kg	
cis-1,3-Dichloropropene	10061-01-5	0.8 ug/kg	2.0 ug/kg	
trans-1,3-Dichloropropene	10061-02-6	0.74 ug/kg	2.0 ug/kg	
Methylene chloride	75-09-2	0.83 ug/kg	5.0 ug/kg	
1.1.1.2-Tetrachloroethane	630-20-6	0.47 ug/kg	2.0 ug/kg	
1,1,2,2-Tetrachloroethane	79-34-5	0. <b>73 ug/kg</b>	2.0 ug/kg	
Tetrachioroethene	127-18-4	0.75 ug/kg	2.0 ug/kg	
1,1,1-Trichloroethane	71-55-6	0.87 ug/kg	2.0 ug/kg	
1,1,2-Trichloroethane	79-00-5	0.83 ug/kg	2.0 ug/kg	
Trichloroethene	79-01-6	0.76 ug/kg	2.0 ug/kg	
Fluorotrichloromethane	75-69 <b>-4</b>	0.62 ug/kg	2.0 ug/kg	
1.2.3-Trichloropropane	96-18-4	0.69 <b>ug/kg</b>	2.0 ug/kg	
Vinyl chloride	75-01-4	0.61 ug/kg	2.0 ug/kg	
SW846 8020A	71-43-2	0.58 ug/kg	2.0 ug/kg	
Benzene	108-90-7	0.89 ug/kg	2.0 ug/kg	
Chlorobenzene	95-50-1	′ 1.0 ug/kg	2.0 ug/kg	
1,2-Dichlorobenzene	541-73-1	0.92 ug/kg	2.0 ug/kg	
1,3-Dichlorobenzene	106-46-7	0.95 ug/kg	2.0 ug/kg	·
1,4-Dichlorobenzene	100-41-4	0.45 ug/kg	2.0 ug/kg	
Ethylbenzene	1634-04-4	1.1 ug/kg	2.0 ug/kg	
Methyl tert-butyl ether	91-20-3	2.1 ug/kg	5.0 ug/kg	
Naphthalene	108-88-3	0.43 ug/kg	2.0 ug/kg	
Toluene	136777-61-2	0.87 ug/kg	2.0 ug/kg	
m-Xylene & p-Xylene	95-47-6	0.47 ug/kg	2.0 ug/kg	
o-Xylene	1330-20-7	0.47 ug/kg	2.0 ug/kg	
Xylenes, Total				
5W846 8310	83-32-9	0. <b>32 ug/L</b>	1.0 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Acenaphthene	208-96-8	0.38 ug/L	1.0 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Acenaphthylene	120-12-7	0.21 ug/L	1.0 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Anthracene	56-55-3	0.035 ug/L	0.2 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Benzo[a]anthracene	Ju-72-3	•		





JC/ VICES		MDL	Reporting Limit	
	205-99-2	0.079 ug/L	0.2 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Benzo[b]fluoranthene	207-08-9	0.043 ug/L	0.2 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Benzo[k]fluoranthene	191-24-2	0.1 ug/L	0.2 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Benzo(g,h,i)perylene	50-32-8	0.04 ug/L	0.2 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Benzo(a)pyrene		0.034 ug/L	0.2 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Chrysene	218-01-9	0.11 ug/L	0.2 ug/L 0.2 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Dibenz(a,h)anthracene	53-70-3	•	0.2 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Fluoranthene	206-44-0	0.053 ug/L	0.2 ug/L 2.0 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Fluorene	86-73-7	0.82 ug/L	J	
Indeno[1,2,3-cd]pyrene	193-39-5	0.014 ug/L	0.2 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
2-Methylnaphthaiene	91-57-6	0.39 ug/L	1.0 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
1-Methylnaphthalene	90-12-0	0.38 ug/L	1.0 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Naphthalene	91-20-3	0.41 ug/L	1.0 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Phenanthrene	85-01-8	0. <b>2</b> 7 u <b>g/L</b>	1.0 ug/L	SPLP-W(1312) -> LIQ/LIQ. C
Pyrene	129-00-0	0.068 ug/L	0.2 ug/L	SPLP-W(1312) -> LIQ/LIQ, C
Acenaphthene	83-32-9	13.0 ug/kg	50.0 ug/kg	
Acenaphthylene	208-96-8	17.0 ug/kg	50.0 ug/kg	
Anthracene	120-12-7	11.0 ug/kg	50.0 ug/kg	
Benzo[a]anthracene	56-55-3	1.3 ug/kg	5.0 ug/kg	
Benzo[a]anthracene	56-55-3	1.3 ug/kg	5.0 ug/kg	
Benzo[b]fluoranthene	205-99-2	1.7 ug/kg	5.0 ug/kg	
Benzo[k]fluoranthene	207-08-9	1.1 ug/kg	5.0 ug/kg	
Benzo[g,h,i]perylene	191-24-2	1.9 ug/kg	5.0 ug/kg	
Benzo[a]pyrene	50-32-8	1.3 ug/kg	5.0 ug/kg	
Chrysene	218-01-9	1.0 ug/kg	5.0 ug/kg	
Dibenz(a,h)anthracene	53-70-3	3.1 ug/kg	5.0 ug/kg	
Fluoranthene	206-44-0	2.9 ug/kg	5.0 ug/kg	
Fluorene	86-73-7	17.0 ug/kg	50.0 ug/kg	
• • • • • • • • • • • • • • • • • • • •	193-39-5	1.0 ug/kg	5.0 ug/kg	
Indeno[1,2,3-cd]pyrene	91-57-6	1.2 ug/kg	50.0 ug/kg	
2-Methylnaphthalene	90-12-0	14.0 ug/kg	50.0 ug/kg	
1-Methylnaphthalene	91-20-3	14.0 ug/kg	50.0 ug/kg	
Naphthalene	85-01-8	12.0 ug/kg	50.0 ug/kg	
Phenanthrene	129-00-0	2.3 ug/kg	5.0 ug/kg	
Pyrene	129-00-0	2.5 WH NE	*** =@ ** <b>0</b>	



#### CASE NARRATIVE

LABORATORY ID NUMBER: B8B110133

### **ORGANICS - INORGANICS**

The Method blank associated with batch numbers 8049184 and 8049187 for method 601 and 602 had several compounds flagged with the "J" value which indicates estimated results below the reporting limit.

The recovery and RPD for FL-Pro, associated with QC batch number 8043180 in the matrix spike/matrix spike duplicate was not calculated because the sample amount was greater than four times the spike amount. This is flagged with MSB.

Due to suspected matrix interference and or dissimilar nature of the sample aliquots, several metals in the matrix spike/matrix spike duplicate associated with QC batch numbers 8044177 and 8044182 were outside the laboratory established control limits. The Laboratory Control Sample indicated acceptable method performance for each batch.

Due to suspected matrix interference and or dissimilar nature of the sample aliquots, Methylene chloride in the matrix spike/matrix spike duplicate associated with QC batch number 8049184 was outside the laboratory established control limits. The Laboratory Control Sample indicated acceptable method performance for the batch.

Due to suspected matrix interference and or dissimilar nature of the sample aliquots, EDB and TPH in the matrix spike duplicate associated with QC batch numbers 8043146 and 8043188 were outside the laboratory established control limits. The Laboratory Control Sample indicated acceptable method performance for each batch.

Due to suspected matrix interference and or dissimilar nature of the sample aliquots, several compounds in the matrix spike/matrix spike duplicate associated with QC batch number 8043186 was outside the laboratory established control limits. The Laboratory Control Sample indicated acceptable method performance for the batch.



Services

#### BROWN & ROOT ENVIRONMENTAL

Client Sample ID: PREBURN

#### GC Volatiles

Lot-Sample #...: B8B110133-001 Work Order #...: CFA1E101 Matrix.....: SOLID

 Date Sampled...:
 02/10/98
 Date Received..:
 02/11/98

 Prep Date.....:
 02/17/98
 Analysis Date..:
 02/18/98

Prep Batch #...: 8049197

Dilution Factor: 1 Initial Wgt/Vol: 100 uL Final Wgt/Vol..: 5 mL

*** Moisture....:** 9.1

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MERICO
Bromobenzene	ND	0.27	mg/kg	METHOD SW846 8010B
Bromodichloromethane	ND	0.27	mg/kg	
Bromoform	ND	0.27	mg/kg	SW846 8010B SW846 8010B
Bromomethane	ND	0.27	mg/kg	SW846 8010B
Carbon tetrachloride	ND	0.27	mg/kg	SW846 8010B
Chlorobenzene	ND	0.27	mg/kg	SW846 8010B
Dibromochloromethane	ND	0.27	mg/kg	SW846 8010B
Chloroethane	ND	0.27	mg/kg	· - <del></del>
2-Chloroethyl vinyl ether	ND	0.69	mg/kg	SW846 8010B SW846 8010B
Chloroform	ND	0.27	mg/kg	SW846 8010B
Chloromethane	ND	0.27	mg/kg	SW846 8010B
Dibromomethane	ND	0.27	mg/kg	SW846 8010B
1,2-Dichlorobenzene	ND	0.27	mg/kg	SW846 8010B
1,3-Dichlorobenzene	ND	0.27	mg/kg	SW846 8010B
1,4-Dichlorobenzene	ND	0.27	mg/kg	SW846 8010B
Dichlorodifluoromethane	ND	0.27	mg/kg	SW846 8010B
1,1-Dichloroethane	ND	0.27	mg/kg	SW846 8010B
1,2-Dichloroethane	ND	0.27	mg/kg	SW846 8010B
1,1-Dichloroethene	ND	0.27	mg/kg	SW846 8010B
trans-1,2-Dichloroethene	ND	0.27	mg/kg	SW846 8010B
1,2-Dichloropropane	ND	0.27	mg/kg	SW846 8010B
cis-1,3-Dichloropropene	ND	0.27	mg/kg	SW846 8010B
trans-1,3-Dichloropropene	ND	0.27	mg/kg	SW846 8010B
Trichlorofluoromethane	ND	0.27	mg/kg	SW846 8010B
1,1,1,2-Tetrachloroethane	ND	0.27	mg/kg	SW846 8010B
1,1,2,2-Tetrachloroethane	ND	0.27	mg/kg	SW846 8010B
Tetrachloroethene	ND	0.27	mg/kg	SW846 8010B
1,1,1-Trichloroethane	ND	0.27	mg/kg	SW846 8010B
1,1,2-Trichloroethane	ND	0.27	mg/kg	SW846 8010B
Trichloroethene	ND	0.27	mg/kg	SW846 8010B
1,2,3-Trichloropropane	ND	0.27	mg/kg	SW846 8010B
Vinyl chloride	ND	0.27	mg/kg	SW846 8010B
Methylene chloride	ND	0.69	mg/kg	SW846 8010B
cis-1,2-Dichloroethene	ND	0.27	mg/kg	SW846 8010B
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
4-Bromofluorobenzene	86	(70 - 130	)	

#### NOTE(S):



Client Sample ID: PREBURN

#### GC Volatiles

Lot-Sample #...: B8B110133-001 Work Order #...: CFA1E102

Date Sampled...: 02/10/98

Prep Date....: 02/17/98

Prep Batch #...: 8049198

**% Moisture....:** 9.1

Dilution Factor: 1

Initial Wgt/Vol: 100 uL

Date Received..: 02/11/98

Analysis Date..: 02/18/98

Final Wgt/Vol..: 5 mL

Matrix....: SOLID

7	7	RT	-	

	112 011 1110			
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Methyl tert-butyl ether	0.11 J	0.27	mg/kg	SW846 8020A
Benzene	ND	0.27	mg/kg	SW846 8020A
Ethylbenzene	1.6	0.27	mg/kg	SW846 8020A
Toluene	ND	0.27	mg/kg	SW846 8020A
Chlorobenzene	ND	0.27	mg/kg	SW846 8020A
1,2-Dichlorobenzene	ND	0.27	mg/kg	SW846 8020A
1,3-Dichlorobenzene	ND	0.27	mg/kg	SW846 8020A
1,4-Dichlorobenzene	ND	0.27	mg/kg	SW846 8020A
Xylenes (total)	3.6	0.27	mg/kg	SW846 8020A
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
4-Bromofluorobenzene	91	(70 - 130)	•	

#### NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Elevated reporting limits due to matrix interference.

J Estimated result. Result is less than RL.



Client Sample ID: PREBURN

#### GC Semivolatiles

Lot-Sample #...: B8B110133-001 Work Order #...: CFA1E104 Matrix..... SOLID Date Sampled...: 02/10/98 Date Received..: 02/11/98 Prep Date....: 02/12/98 Analysis Date..: 02/13/98 Prep Batch #...: 8043180 Dilution Factor: 1 Initial Wgt/Vol: 30 g Final Wgt/Vol..: 2 mL **% Moisture....:** 9.1 REPORTING PARAMETER RESULT LIMIT UNITS METHOD TPH (C8-C40) 480 11 mg/kg FL-DEP FL-PRO RECOVERY PERCENT SURROGATE RECOVERY LIMITS o-Terphenyl 94 (22 - 166)Nonatriacontane

(10 - 192)

94

NOTE(S):



Client Sample ID: PREBURN

#### HPLC

Lot-Sample #...: B8B110133-001 Work Order #...: CFA1E103 Matrix....: SOLID

Date Sampled...: 02/10/98 Date Received..: 02/11/98

Prep Date....: 02/12/98 Analysis Date.: 02/17/98

Prep Batch #...: 8043179

Dilution Factor: 1

* Moisture....: 9.1

Initial Wgt/Vol: 30 g

Final Wgt/Vol..: 1 mL

| PARAMETER Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(k) fluoranthene Chrysene Dibenz(a,h) anthracene Fluoranthene Fluorene Indeno(1,2,3-cd) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Phenanthrene Pyrene | RESULT  ND  ND  4.4 J  ND  ND  8.1  ND  ND  ND  ND  ND  ND  ND  ND  ND  N | REPORTING LIMIT 55 55 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 | UNITS  ug/kg   METHOD  SW846 8310  
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SURROGATE<br>Carbazole                                                                                                                                                                                                                                                           | PERCENT<br>RECOVERY<br>60                                                 | RECOVERY<br>LIMITS<br>(30 - 130)                      | ug/ ng                                                                                                                                                                        | SW846 8310                                                                                                                                                                                                                                                                                                         |

#### NOTE (S):

J Estimated result. Result is less than RL.

**Quanterra**Environmental

Matrix....: SOLID

Client Sample ID: PREBURN

#### TOTAL Metals

Lot-Sample #...: B8B110133-001

Date Sampled...: 02/10/98

Date Received..: 02/11/98

*** Moisture....:** 9.1

		REPORT	ING		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	
Prep Batch Mercury	#: 8044177 0.021 B	<b>0.11</b> Dilution Fa	mg/kg	<b>SW846 7471A</b> Initial Wgt/Vol:	02/13/98 Final Wgt/Vol	ORDER #  CFA1R10D : 0
Prep Batch	#: 8044182					
Arsenic	1.2	0.27	mg/kg	SW846 6010A	02/13-02/16/00	GEN 1 71 0 0
		Dilution Fa		Initial Wgt/Vol:	02/13-02/16/98 Final Wgt/Vol	
Barium	3.8 B	5.5	mg/kg	SW846 6010A	02/13-02/16/00	OD3 1 7 4 4 5
		Dilution Fa		Initial Wgt/Vol:	02/13-02/16/98 CFA: Final Wgt/Vol: 0	
Cadmium	ND	0.55	mg/kg	SW846 6010A	02/13-02/16/98	CD3 - D4 - C
		Dilution Fac		Initial Wgt/Vol:	Final Wgt/Vol:	
Lead	4.2	0.27	mg/kg	SW846 6010A	02/13-02/16/98	<i>a</i> na
		Dilution Fac		Initial Wgt/Vol:	Final Wgt/Vol:	
Chromium	5.7	1.1	mg/kg	SW846 6010A	02/13-02/16/98	CBX 1 B1 07
		Dilution Fac	tor: 1	Initial Wgt/Vol:	Final Wgt/Vol:	
Selenium	0.29	0.27	mg/kg	SW846 6010A	02/13-02/16/98	ሮ <b>ሮ</b> እ 1 ይ1 ሰ <i>ሮ</i>
		Dilution Fac	tor: 1	Initial Wgt/Vol:	Final Wgt/Vol:	
Silver	0.36 B	0.80	mg/kg	SW846 6010A	02/13-02/16/98 (	ማምል ነ ምን በወ
		Dilution Fac	tor: 1	<pre>Initial Wgt/Vol:</pre>	Final Wgt/Vol:	
1700m (a)						

NOTE(S):

B Estimated result. Result is less than RL.



Client Sample ID: PREBURN

#### General Chemistry

Lot-Sample #...: B8B110133-001

Date Sampled...: 02/10 98

Work Order #...: CFA1E

Date Received..: 02/11/98

Matrix..... SOLID

* Moisture....: 9.1

PARAMETER Percent Solids	RESULT 90.9	RL 1.0	UNITS	METHOD MCAWW 160.3 MOD	PREPARATION- ANALYSIS DATE 02/13/98	PREP BATCH # 8044174
	. D:	ilution Fact	or: 1	Initial Wgt/Vol:	Final Wgt/Vol	: 0
Total Organic Halogens	ND	220	mg/kg	SW846 9020A	02/18/98	8049181
	Di	ilution Facto	or: 1	Initial Wgt/Vol:	Final Wgt/Vol	: 0

NOTE(S):

**RL Reporting Limit** 



## Quanterra Quality Control Program Summary (continued)

Environmental Services

#### Surrogate Spike Recovery Evaluations

For GC and GC/MS analyses, known concentrations of designated surrogate spikes, consisting of a number of similar, non-method compounds or method compound analogues, are added to sample fractions prior to sample extraction and analysis. The percent recovery determinations calculated from the subsequent analysis is one indication of the overall method efficiency for the individual sample. The surrogate spike recovery data is displayed alongside acceptance limits at the bottom of each applicable analytical result report page. Where sufficient laboratory-generated data does not yet exist to determine appropriate control limits, advisory limits may be enacted until sufficient data is collected to allow implementation of control limits.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD) Evaluations

In conjunction with the analysis of a client-provided field sample, a known concentration of designated matrix spike compounds (target analytes) are added to two aliquots of the actual sample. Percent recovery determinations are calculated from both spiked aliquots, using target analyte concentrations already present in the actual sample as a baseline. The percent recovery determinations indicate the accuracy of the method specific to the target analytes (or other individual components represented by a subset of control analytes) in the individual sample matrix. Comparison of the percent recoveries in the two spiked aliquots yields a relative percent difference (RPD). Percent recovery and relative percent difference data is displayed alongside historical criteria, that may be used to judge individual sample matrix effects for specific analytes. MS/MSD data is evaluated by the laboratory with respect to the individual sample matrix. In cases where MS/MSD data indicate sample method performance outside of historical criteria, the laboratory control sample results are referenced to ensure acceptable method performance by the laboratory for the sample batch. For analyses which are inappropriately suited for matrix spikes (e.g. pH), non-spiked duplicate analyses are performed to generate precision data. Matrix spike duplicates are typically performed on at least one sample within each analytical batch. A minimum of 10% of all laboratory analyses are matrix spikes or duplicates.

#### Corrective Action Evaluations

The goal of the Quanterra Quality Control Program is to generate data that demonstrates process control, and allows for client usability of data. Where the analytical process is demonstrated to vary from established criteria, or client requirements have not been met, data evaluation resulting in corrective action may be required. Corrective action may include re-preparation and/or reanalysis of field samples and QC samples. Where appropriate or necessary to allow proper interpretation of results presented in the final report, details of corrective actions taken during the laboratory processing of samples are presented as a case narrative at the front of the report. Alternatively, routine corrective action, such as reanalysis, may be footnoted on individual sample result pages.

#### Analytical Result Qualifier Flags

Where applicable, data qualifiers may be appended to analytical results in order to allow for proper interpretation of the result presented. Typically, the presence of data qualifier flag on an analytical result page is accompanied by a footnote explaining the qualifier.



### GC Volatiles

Client Lot #...: B8B110133

MB Lot-Sample #: B8B180000-197

Work Order #...: CFEPK101

Matrix..... SOLID

Prep Date....: 02/17/98 Prep Batch #...: 8049197

Initial Wgt/Vol: 100 uL

Final Wgt/Vol..: 5 mL

Analysis Date..: 02/17/98 Dilution Factor: 1

DADAMETER		REPORTING		
PARAMETER Bromobenzene	RESULT	LIMIT	UNITS	METHOD
	ND ,	0.25	mg/kg	SW846 8010B
Bromodichloromethane	ND	0.25	mg/kg	SW846 8010B
Bromoform	ND	0.25	mg/kg	SW846 8010B
Bromomethane	ND	0.25	mg/kg	SW846 8010B
Carbon tetrachloride	ND	0.25	mg/kg	SW846 8010B
Chlorobenzene	ND	0.25	mg/kg	SW846 8010B
Dibromochloromethane	ND	0.25	mg/kg	SW846 8010B
Chloroethane	ND	0.25	mg/kg	
2-Chloroethyl vinyl ether	ND	0.62	mg/kg	SW846 8010B
Chloroform	ND	0.25	mg/kg	SW846 8010B
Chloromethane	ND	0.25	mg/kg	SW846 8010B
Dibromomethane	ND	0.25	mg/kg	SW846 8010B
1,2-Dichlorobenzene	ND	0.25	mg/kg	SW846 8010B
1,3-Dichlorobenzene	ND	0.25		SW846 8010B
1,4-Dichlorobenzene	ND	0.25	mg/kg	SW846 8010B
.chlorodifluoromethane	ND	0.25	mg/kg	SW846 8010B
1,1-Dichloroethane	ND	0.25	mg/kg	SW846 8010B
1,2-Dichloroethane	ND	0.25	mg/kg	SW846 8010B
1,1-Dichloroethene	ND	0.25	mg/kg	SW846 8010B
trans-1,2-Dichloroethene	ND	0.25	mg/kg	SW846 8010B
1,2-Dichloropropane	ND	0.25	mg/kg	SW846 8010B
cis-1,3-Dichloropropene	ND	0.25	mg/kg	SW846 8010B
trans-1,3-Dichloropropene	ND	0.25	mg/kg	SW846 8010B
Frichlorofluoromethane	ND		mg/kg	SW846 8010B
1,1,1,2-Tetrachloroethane	ND	0.25	mg/kg	SW846 8010B
1,1,2,2-Tetrachloroethane	ND	0.25	mg/kg	SW846 8010B
Tetrachloroethene	ND	0.25	mg/kg	SW846 8010B
.,1,1-Trichloroethane		0.25	mg/kg	SW846 8010B
.,1,2-Trichloroethane	ND	0.25	mg/kg	SW846 8010B
richloroethene	ND	0.25	mg/kg	SW846 8010B
.,2,3-Trichloropropane	ND	0.25	mg/kg	SW846 8010B
inyl chloride	ND	0.25	mg/kg	SW846 8010B
ethylene chloride	ND	0.25	mg/kg	SW846 8010B
is-1,2-Dichloroethene	ND	0.62	mg/kg	SW846 8010B
1,2 Dichioloethene	ND	0.25	mg/kg	SW846 8010B
URROGATE	PERCENT	RECOVERY		
	RECOVERY	LIMITS	<del></del>	
-Bromofluorobenzene	102	(70 - 130	))	



#### GC Volatiles

Client Lot #...: B8B110133

MB Lot-Sample #: B8B180000-198

Work Order #...: CFEPL101

Matrix....: SOLID

Prep Date....: 02/17/98 Prep Batch #...: 8049198

Final Wgt/Vol..: 5 mL

Analysis Date..: 02/17/98 Dilution Factor: 1

Initial Wgt/Vol: 100 uL

REPORTING

PARAMETER		REPORTING			
	RESULT	LIMIT	UNITS	METHOD	
Methyl tert-butyl ether	ND	0.25	mg/kg		
Benzene	ND '	0.25		SW846 8020A	
Ethylbenzene	ND		mg/kg	SW846 8020A	
Toluene	_	0.25	mg/kg	SW846 8020A	
Chlorobenzene	ND	0.25	mg/kg	SW846 8020A	
	ND	0.25	mg/kg	SW846 8020A	
1,2-Dichlorobenzene	ND	0.25	mg/kg	SW846 8020A	
1,3-Dichlorobenzene	ND	0.25	mg/kg		
1,4-Dichlorobenzene	ND	0.25		SW846 8020A	
Xylenes (total)	ND	- <del>-</del>	mg/kg	SW846 8020A	
,	ND	0.25	mg/kg	SW846 8020A	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS			
4-Bromofluorobenzene	100	(70 - 130	0)		

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.



### GC Semivolatiles

Client Lot #...: B8B110133 : Work Order #...: CFAND101 MB Lot-Sample #: B8B120000-180 Matrix....: SOLID

Prep Date....: 02/12/98 Analysis Date..: 02/13/98 Final Wgt/Vol..: 2 mL

Prep Batch #...: 8043180 Dilution Factor: 1

Initial Wgt/Vol: 30 g

REPORTING PARAMETER RESULT LIMIT TPH (C8-C40) UNITS METHOD ND 10 mg/kg FL-DEP FL-PRO PERCENT RECOVERY

SURROGATE RECOVERY LIMITS o-Terphenyl 86 (22 - 166)Nonatriacontane 50 (10 - 192)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.



#### HPLC

Client Lot #...: B8B110133

MB Lot-Sample #: B8B120000-179

Work Order #...: CFANC101

Matrix....: SOLID

Prep Date....: 02/12/98

Final Wgt/Vol..: 1 mL

Analysis Date..: 02/17/98 Dilution Factor: 1

Prep Batch #...: 8043179

Initial Wgt/Vol: 30 g

REPORTING .

			.110	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acenaphthene	ND ,	50	ug/kg	SW846 8310
Acenaphthylene	ND	50	ug/kg	SW846 8310
Anthracene	ND	50	ug/kg	SW846 8310
Benzo(a)anthracene	ND	5.0	ug/kg	SW846 8310
Benzo(a)pyrene	ND	5.0	ug/kg	SW846 8310
Benzo(b)fluoranthene	ND	5.0	ug/kg	SW846 8310
Benzo(ghi)perylene	ND	5.0	ug/kg	SW846 8310
Benzo(k) fluoranthene	ND	5.0	ug/kg	SW846 8310
Chrysene	ND	5.0	ug/kg	SW846 8310
Dibenz(a,h)anthracene	ND	5.0	ug/kg	SW846 8310
Fluoranthene	ND	5.0	ug/kg	SW846 8310
Fluorene	ND	50	ug/kg	SW846 8310
Indeno(1,2,3-cd)pyrene	ND	5.0	ug/kg	SW846 8310
1-Methylnaphthalene	ND	50	ug/kg	SW846 8310
2-Methylnaphthalene	ND	50	ug/kg	SW846 8310
Naphthalene	ND	50	ug/kg	SW846 8310
Phenanthrene	ND	50	ug/kg	
Pyrene	ND	5.0		SW846 8310
•	1111	3.0	ug/kg	SW846 8310
	PERCENT	RECOVERY	<u>.</u>	
SURROGATE	RECOVERY	LIMITS		
Carbazole	88	(30 - 13	(0)	

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.



Final Wgt/Vol..: 0

#### METHOD BLANK REPORT

#### TOTAL Metals

Client Lot #...: B8B110133 Matrix....: SOLID REPORTING PREPARATION-PARAMETER WORK RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # MB Lot-Sample #: B8B130000-177 Prep Batch #...: 8044177 Mercury 0.10 mg/kg SW846 7471A 02/13/98 CFCNP101 Dilution Factor: 1 Initial Wgt/Vol: Final Wgt/Vol..: 0 MB Lot-Sample #: B8B130000-182 Prep Batch #...: 8044182 Arsenic ND 0.25 mg/kg SW846 6010A 02/13-02/16/98 CFCQ6107 Dilution Factor: 1 Initial Wgt/Vol: Final Wgt/Vol..: 0 Barium ND 5.0 mg/kg SW846 6010A 02/13-02/16/98 CFCQ6103 Dilution Factor: 1 Initial Wgt/Vol: Final Wgt/Vol..: 0 Cadmium ND 0.50 mg/kg SW846 6010A 02/13-02/16/98 CFCQ6104 Dilution Factor: 1 Initial Wgt/Vol: Final Wgt/Vol..: 0 Lead ND 0.25 mg/kg SW846 6010A 02/13-02/16/98 CFCQ6101 Dilution Factor: 1 Initial Wgt/Vol: Final Wgt/Vol..: 0 Thromium ND 1.0 mg/kg SW846 6010A 02/13-02/16/98 CFCQ6105 Dilution Factor: 1 Initial Wgt/Vol: Final Wgt/Vol..: 0 Selenium ND 0.25 mg/kg SW846 6010A 02/13-02/16/98 CFCQ6102 Dilution Factor: 1 Initial Wgt/Vol: Final Wgt/Vol..: 0 Silver ND 0.73 mg/kg SW846 6010A 02/13-02/16/98 CFCQ61Q6 Dilution Factor: 1 Initial Wgt/Vol:

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):



Environmental Services

### General Chemistry

Client Lot #...: B8B110133

Matrix....: SOLID

REPORTING

RESULT

METHOD

PREPARATION-PREP

Total Organic

LIMIT UNITS

Work Order #: CFEL6101 MB Lot-Sample #: A8B180000-181

ANALYSIS DATE BATCH #

Halogens

PARAMETER

200

mg/kg

SW846 9020A

02/18/98

8049181

Dilution Factor: 1

Initial Wgt/Vol:

Final Wgt/Vol..: 0

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

ND



### LABORATORY CONTROL SAMPLE EVALUATION REPORT

#### GC Volatiles

Client Lot #...: B8B110133 Work Order #...: CFEPK102 LCS Lot-Sample#: B8B180000-197 Matrix....: SOLID

Prep Date....: 02/17/98 Analysis Date..: 02/17/98

Prep Batch #...: 8049197

Dilution Factor: 1 ·Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 100 uL

PARAMETER Chlorobenzene Chloroform 1,3-Dichlorobenzene 1,1-Dichloroethene Trichloroethene	PERCENT RECOVERY 98 84 96 88 68	RECOVERY LIMITS (72 - 128) (64 - 150) (50 - 151) (63 - 158) (55 - 154)	METHOD SW846 8010B SW846 8010B SW846 8010B SW846 8010B SW846 8010B
SURROGATE 4-Bromofluorobenzene		PERCENT RECOVERY 106	RECOVERY LIMITS (70 - 130)

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters



# GC Volatiles

Client Lot #...: B8B110133 Work Order #...: CFEPL102 Matrix....: SOLID

LCS Lot-Sample#: B8B180000-198

Prep Date....: 02/17/98 Analysis Date..: 02/17/98

Prep Batch #...: 8049198

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 100 uL

PERCENT RECOVERY PARAMETER RECOVERY LIMITS METHOD Benzene 98 (61 - 141)SW846 8020A Chlorobenzene 96 (67 - 135)SW846 8020A Toluene 100 (61 - 136)SW846 8020A

PERCENT RECOVERY SURROGATE RECOVERY LIMITS 4-Bromofluorobenzene 102 (70 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters



# GC Semivolatiles

Client Lot #...: B8B110133 Work Order #...: CFAND102 Matrix....: SOLID

LCS Lot-Sample#: B8B120000-180

Prep Date....: 02/12/98 Analysis Date..: 02/13/98

Prep Batch #...: 8043180

Dilution Factor: 1 Final Wgt/Vol..: 2 mL

Initial Wgt/Vol: 30 g

PERCENT RECOVERY

PARAMETER RECOVERY LIMITS METHOD TPH (C8-C40) 68 (52 - 112)FL-DEP FL-PRO

PERCENT RECOVERY SURROGATE RECOVERY LIMITS o-Terphenyl 88 (22 - 166)

Nonatriacontane 39 (10 - 192)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters



# HPLC

Client Lot #...: B8B110133 Work Order #...: CFANC102 LCS Lot-Sample#: B8B120000-179 Matrix....: SOLID

Prep Date....: 02/12/98 Analysis Date..: 02/17/98

Prep Batch #...: 8043179

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 30 g

PARAMETER Acenaphthene Chrysene Fluorene 1-Methylnaphthalene Naphthalene Pyrene	PERCENT RECOVERY 71 73 75 68 90 73	RECOVERY LIMITS (43 - 115) (48 - 115) (44 - 115) (43 - 115) (43 - 115) (48 - 115)	METHOD SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310
SURROGATE Carbazole		PERCENT RECOVERY 88	RECOVERY LIMITS (30 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters



# TOTAL Metals

Client Lot #	: B8B11013	3 :		Matri	_
PARAMETER	RECOVERY	RECOVERY LIMITS		PREPARATION ANALYSIS DAT	X: SOLID  TE WORK ORDER #
LCS Lot-Sample# Mercury	102	(90 - 110) Dilution Facto	t <b>ch #:</b> 80441 SW846 7471A r: 1 Initia	.77 02/13/98 al Wgt/Vol:	
	: B8B130000 101	-182 <b>Prep Bat</b> (87 - 110)	ch #: 80441.	82	
Cadmium	98	(87 - 110) Dilution Factor	SW846 6010A : 1 Initia	02/13-02/16/9 l Wgt/Vol:	98 CFCQ610C Final Wgt/Vol: 0
Chromium	99	(87 - 111) ; Dilution Factor	SW846 6010A : 1 Initía:	02/13-02/16/9 1 Wgt/Vol:	8 CFCQ610D Final Wgt/Vol 0
Silver	89	(84 - 110) 9	W846 6010A	02/13-02/16/9 . Wgt/Vol:	
Arsenic	96	(84 - 110) S	W846 6010A	02/13-02/16/98 Wgt/Vol:	
	97	(86 - 110) s	W846 6010A	02/13-02/16/98 Wgt/Vol:	
Selenium		(77 - 110) SI	V846 6010A	02/13-02/16/98 Wgt/Vol: F	
NOTE(S):					"ge/ •O£.,; U

Calculations are performed before rounding to avoid round-off errors in calculated results.



# General Chemistry

Client Lot #...: B8B110133

Matrix....: SOLID

PERCENT

RECOVERY

PARAMETER

RECOVERY

PREPARATION-

PREP

Total Organic

LIMITS

METHOD

ANALYSIS DATE

BATCH #

Work Order #: CFEL6102 LCS Lot-Sample#: A8B180000-181

Halogens

82

(75 - 125) SW846 9020A

02/18/98

3049191

Dilution Factor: 1

Initial Wgt/Vol:

Final Wgt/Vol..: 0

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.



# GC Volatiles

Client Lot #...: B8B110133 Work Order #...: CFA1E11E-MS Matrix....: SOLID MS Lot-Sample #: B8B110133-001

CFA1E11F-MSD

Date Sampled...: 02/10/98 Date Received..: 02/11/98 Prep Date....: 02/17/98

Analysis Date..: 02/18/98 Prep Batch #...: 8049197

Dilution Factor: 1 Initial Wgt/Vol: 100 uL Final Wgt/Vol..: 5 mL *** Moisture....:** 9.1

PARAMETER Chlorobenzene	PERCENT RECOVERY 66	RECOVERY LIMITS (38 - 150)	RPD	RPD LIMITS	METHOD
Chloroform	77 63	(38 - 150) (49 - 133)	15	(0-25)	SW846 8010B SW846 8010B SW846 8010B
1,3-Dichlorobenzene	64 66	(49 - 133) (7.0- 187)	1.8	(0-25)	SW846 8010B SW846 8010B
1,1-Dichloroethene	68 62	(7.0- 187) (28 - 167)	3.7	(0-25)	SW846 8010B SW846 8010B
Trichloroethene	66 60 56	(28 - 167) (35 - 146)	6.0	(0-25)	SW846 8010B SW846 8010B
	36	(35 - 146)	7.4	(0-25)	SW846 8010B
SURROGATE Bromofluorobenzene		PERCENT RECOVERY 110 103		RECOVERY <u>LIMITS</u> (70 - 130) (70 - 130)	-

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results and reporting limits have been adjusted for dry weight.

Elevated reporting limits due to matrix interference.

Elevated reporting limits due to matrix interference.



# GC Volatiles

Client Lot #...: B8B110133 Work Order #...: CFA1E11G-MS MS Lot-Sample #: B8B110133-001 Matrix....: SOLID

CFA1E11H-MSD Date Sampled...: 02/10/98

Date Received..: 02/11/98 Prep Date....: 02/17/98

Analysis Date..: 02/18/98 Prep Batch #...: 8049198

Dilution Factor: 1 Initial Wgt/Vol: 100 uL Final Wgt/Vol..: 5 mL *** Moisture....:** 9.1

PARAMETER Benzene	PERCENT RECOVERY 120	RECOVERY LIMITS (39 - 150)	RPD	RPD LIMITS	<u>METHO</u>	
Toluene	118 125	(39 - 150) (46 - 148)	1.6	(0-25)	SW846	8020A 8020A
Chlorobenzene	124 71	(46 - 148) (55 - 135)	0.62	(0-25)	SW846	8020A 8020A 8020A
	76	(55 - 135)	7.0	(0-25)	SW846	
SURROGATE 4-Bromofluorobenzene		PERCENT RECOVERY 126 118		RECOVERY <u>LIMITS</u> (70 - 130) (70 - 130)		
MOTTE (C)				•		

# NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results and reporting limits have been adjusted for dry weight.

Elevated reporting limits due to matrix interference.

Elevated reporting limits due to matrix interference.



# GC Semivolatiles

Client Lot #...: B8B110133 Work Order #...: CFA1E10J-MS Matrix....: SOLID

Date Sampled : 03/10/03

Prep Batch #...: 8043180

PERCENT , RECOVERY RPD PARAMETER RECOVERY LIMITS RPD LIMITS METHOD TPH (C8-C40) NC, MSB (41 - 224)FL-DEP FL-PRO (41 - 224)NC, MSB (0-25)FL-DEP FL-PRO PERCENT RECOVERY SURROGATE RECOVERY LIMITS o-Terphenyl (22 - 166)94 (22 - 166)Nonatriacontane 84 (10 - 192)75 (10 - 192)

# NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MSB The recovery and RPD were not calculated because the sample amount was greater than four times the spike amount.

^{&#}x27;ld print denotes control parameters

 $[\]mathcal{L}$  The recovery and RPD were not calculated.



#### HPLC

Client Lot #...: B8B110133

Work Order #...: CFA1E10G-MS

MS Lot-Sample #: B8B110133-001

CFA1E10H-MSD

Date Sampled...: 02/10/98 Prep Date....: 02/12/98

Date Received..: 02/11/98

Analysis Date..: 02/18/98

Prep Batch #...: 8043179

*** Moisture....:** 9.1

Dilution Factor: 1

Initial Wgt/Vol: 30 g

Final Wgt/Vol..: 1 mL

Matrix....: SOLID

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Acenaphthene	58	(10 - 124)			SW846 8310
	49	(10 - 124)	16	(0-30)	SW846 8310
Chrysene	75	(10 - 199)		•	SW846 8310
	68	(10 - 199)	9.4	(0-30)	SW846 8310
Fluorene	72	(10 - 142)			SW846 8310
1-Methylnaphthalene	68	(10 - 142)	5.8	(0-30)	SW846 8310
	74	(30 - 130)		·	SW846 8310
	58	(30 - 130)	14	(0-30)	SW846 8310
Naphthalene	82	(10 - 122)			SW846 8310
_	59	(10 - 122)	26	(0-30)	SW846 8310
Pyrene	110	(10 - 140)			SW846 8310
	116	(10 - 140)	5.2	(0-30)	SW846 8310
		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	
Carbazole		76		(30 - 130)	<del>-</del>
		69		(30 - 130)	

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Boid print denotes control parameters



02/13-02/16/98 CFA1E10R

02/13-02/16/98 CFALE10T

02/13-02/16/98 CFA1E112

02/13-02/16/98 CFA1E113

Final Wgt/Vol..: 0

Final Wgt/Vol..: 0

# MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Date Sampl	#: B8B1 Led: 02/1		eceived	l: 02/11/98	Matrix:	SOLID
	PERCENT	RECOVERY	RPD		PREPARATION-	
PARAMETER	RECOVERY	LIMITS RPD	LIMITS	METHOD		WORK ORDER #
MS Lot-Sam	ple #: B8B11	10133-001 · Prep B	atch #.	8044177		
Mercury	127 N	(80 - 120)		SW846 7471A	02/12/00	~=
	129 N	(80 - 120) 1.5	(0-20)	SW846 7471A		CFA1E10M
		Dilution Fact	or: 1	Initial Wgt/Vol:	Final Wgt/V	CFA1E10N ol: c
MS Lot-Sam	nle #· Bobii	.0133-001 <b>Prep Ba</b>	t_ H	•••		
Arsenic	79 N	(80 - 120)	ICCH #.	: 8044182 SW846 6010A		
	79 N	(80 - 120) 0.21	(0-20)	SW846 6010A	02/13-02/16/98 (	FA1E114
•		Dilution Facto	or: 1	Initial Wgt/Vol:	02/13-02/16/98 ( Final Wgt/Vo	
Barium	99	(80 - 120)		SW846 6010A		
	99	(80 - 120) 0.24	(0-20)		02/13-02/16/98	FA1E10U
		Dilution Facto		Initial Wgt/Vol:	02/13-02/16/98 C Final Wgt/Vo	
G= 4				<b>3</b> -7 <b>2</b> -1	Final Wgt/Vo	1: 0
Cadmium	94	(80 - 120)		SW846 6010A	02/13-02/16/98 C	FAIRIOW
	96	(80 - 120) 1.6			02/13-02/16/98 C	FA1E10X
•		Dilution Facto	r: 1	<pre>Initial Wgt/Vol:</pre>	Final Wgt/Vo	
ead	93	(80 - 120)		SW846 6010A	00/10 00/10 1	
	96	(80 - 120) 2.8	(0-20)		02/13-02/16/98 C	FA1E10P
		Dilution Factor			02/13-02/16/98 C	
Chromium	97 [.]	(80 - 120)		SW846 6010A	00/00 00/0	
		(80 - 120) 2.5 (	0-20)	SW846 6010A	02/13-02/16/98 CT	FA1E110
		Dilution Factor			02/13-02/16/98 CI Final Wgt/Vol	
Selenium	53 M	<b>/</b>			rinal wgt/voi	: U
Setemen	57 N	(80 - 120)		SW846 6010A	02/13-02/16/98 CF	AlElor

SW846 6010A

SW846 6010A

SW846 6010A

Initial Wgt/Vol:

Initial Wgt/Vol:

#### NOTE (S):

Silver

Calculations are performed before rounding to avoid round-off errors in calculated results.

(80 - 120) 1.2 (0-20)

(80 - 120) 1.7 (0-20)

Dilution Factor: 1

(80 - 120)

Dilution Factor: 1

Results and reporting limits have been adjusted for dry weight.

58 N

88

89

N Spiked analyte recovery is outside stated control limits.



# TAMPA LABORATORY CONDITION UPON RECEIPT FORM

Client: Date Received: Received By:	Client: Drain + Cort  Date Received: 2/11/98  Received By: Carol mc nucty				Shilute Carri	my Full				
Cooler/Shipping In	formation:	l				<del></del>				
Type: Cooler X	Box Other/									
Cooler ID/Track #										
Temp (Celsius)	21									
Cooler ID/Track #	7	)								
Temp (Celsius)	) c			<del></del> .	<del> </del>					
Any "NO" response	s or discrepancies shou	ld be explained i	in the "Comm	ents" section l	below.					
1 337		CHECKLIST				YES	NO NA			
1. Were custody se	als on shipping contain	er(s) intact? Che	ck "NA" if ha	nd delivered.		57				
If "Yes," check of	one: CUSTODY SEAL	SAVED U	NABLE TO S	<b>AVE CUSTO</b>	DY SEALX	X				
2. Were custody pa	pers properly included	with samples?				X		$\neg$		
3. Were custody pa	pers properly filled out	(ink, signed, ma	tch labels)?			X		_		
5 Were all bottle la	rive in good condition (	unbroken)?	<del> ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,</del>			×		_		
6 Were correct born	bels complete (sample tles used for the tests in	#, date, signed, a	analysis, prese	rvatives)?		<b>V</b>				
7. Were proper sam	ple preservation technic	dicated?	<del></del>		<del></del>	×				
8. Were samples rec	ceived within holding ti	ques indicated?	CM secuined	·		X		_		
9. Were all VOA bo	ottles checked for the pr	esence of air but	civi required.	<del></del>		X				
If air bubbles wer	e found, indicate in cor	nment section	noi <b>c2</b> ;							
	direct contact with wet		neck one: NO	ICE   BLU	FICE	$\frac{\lambda}{\lambda}$		$\dashv$		
11. Were the sample If "No," check or	s received with a tempe	rature blank? RI	ECORD TEN	PERATURE	E ABOVE			$\dashv$		
UNABLE TO DETE	RMINE TEMP ☐ TEM	P TAKEN FRO	M ICE/WAT	ER NEAD CAI	MDI EC 🗆	1/				
12. Were sample pHs	checked and recorded	by S.R. (see bac	k for Page 2	Sample nH)?	WIFLES [	<del>-X- </del> -		<u> </u>		
NOTE: TOC and VO	A samples are checked trequired/performed by	by laboratory ar	nalvsts. If res	ponse is "Not	Inspected "	$\times$	Not inspected - Page 2 not			
	epted into the laborator					16	completed			
Comments:	ut MS/MSN		mwc2	ı	ph for	- Mita	és = <2 + F	<u> </u>		
try	blank reco	( not on	n Co C					-		
Complete if applicable Project Manager initial Corrective Action:	: NCM#: ls/date reviewed: _ ユ	-12-57 L	Check o	ne: Notified F	PM by E-mail	☐ Hard	i Copy _	-		
Corrective Action com	pleted by/date:							•		

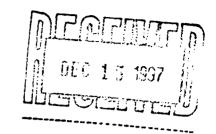
	Brown	&	Ro	0
1111	Enviror	m	ent	al

455 FAIRWAY DRIVE, SUITE 200 DEERFIELD BEACH, FLORIDA 33441 (305) 570-5885 (305) 570-5974 (FAX)

SITE MANAGER:	12.1	Carry .	
			and salarie , frage

SHIPPED TO:	PAGE _/ OF _
Garage	-/ Tampa

			0,0 00,4 (	1 ////	۲.0.	NO.:		<u>/ ·</u>	<del></del>							i				(LAB	ORATOR	Y NAM	E, CITY)	<del></del>
CHAIN C	OF CUS	TODY	RECORD								LAE	OR	AT	ORY	A	L NAI	LYS					-		
SAMPLED E	3Y (PRIN SIGNATUF	T): <u> </u>	Juli jara	di			Т	MPLE YPE	MATRIX	PRE	ES.	\\\ _{\b} 4	(1)	[1/	/ _V »/	7	1	/		/ ક <i>ક્ષ</i> / ા				☐ RUSH
LAB NO.	DATE	TIME	SAM	PLE IDE	ENTIFICATI	ION	COMP.	GRAB	MAT	PARAMETE	2/2/2				//	/,	/,	/,	WUNBER	RI RI RI RI	esults (	DUE DAT		
	1/14/18	75"08	Peb	2)			X	I	3	][	11		Ĭ		1	$\forall$	7	7	.5			COM	MENTS	· - · - · - · - · - · - · - · - · - · -
										][					7		十	$\top$			<del></del>			···
<del></del>	-	-	•			<del></del>				] [														
	<del> </del>								<u> </u>	┧┟							$\prod$	$\Box$						<del></del>
	+							1	ļ	┧┟														
<del></del>	+	<del>  </del>	<del></del>					+	<del> </del>	┨┞	$\bot$				_		$\perp$		_					······································
<del></del>	<del> </del>	<del>   </del>	<del></del>					1_	<del> </del>	┧┟					$\bot$	$\perp$								
	<del> </del>	<del>  </del>						<del> </del>	<del> </del>	<b>↓</b>  _		_			$\dashv$	_	_	$\perp$						
	-	<del> </del>						┼	-	┨┞	4_				$\dashv$	$\perp$	_	_		<u></u>				
	+	<del> </del>	<del></del>					-	-	┨┞	┼				$\dashv$	$\dashv$		_						
	<del></del>	-						+-	<del> </del>	┨┝	+-				$\dashv$	$\dashv$	_	4			·	<del></del>		
	<del></del>	<u> </u>				*******				4	+-			<del>     </del>	_	-	$\dashv$	4						
EMPTY BOTTLES	RELINQUIS	HED BY (SIG	SNATURE)		TAL NUI	MBER (		IIAI			<u> </u>	1	1						5					
①			······		NO N	A TIME:			- 2	PTY BO	OTILES Lall	RECE	IVED	BY (S	IGNA	TURE	)			SE MFS	AL INTAC	T?	DATE: 1/1	ピリケチ
RELINQUISHED B	SIGNATE	JRE)			AL INTACT?		2/10/	98	REC	CEIVED	BY (	SIGNA	TURE	۲.					- 1	_SE	AL INTAC	T?	DATE: 1	
RELINQUISHED B	Y (SIGNATE	JRE)		YES STA	NO N/	/A TIME:	16:3	ō	<b>4</b>					h	W	ty			$\perp$		NO	N/A		000
<u>(5)</u>					NO N/	/A TIME:			-  REC	CEIVED	BY (S	SIGNA	TURE	1		•					AL INTAC NO		DATE:	
SPECIAL	INSTRU	CTIONS	;	-				T		ORA	TOR	YR	REM	ARK	S:					120		14/7	TIME:	<del></del>
SAMPLE CONTAIN	NERS PRECI	FANED BY:	<del></del>		<del></del>				<del></del>															
□ BRE [	☑ LABOR	ATORY &	MANUFACT		METHO	D OF SHI	PMENT:	<u></u> E	-1 3	EX	# 8	009	29/	733	和	iLL (	OF L	.ADI	NG	NO.:				
WHITE-FULLY EXE YELLOW-RECEIVIN PINK-SAMPLERS	ABORAT ^Y QA C	TORY COPY	SAMPLING TE	EAM: 11 Geo 1	1				_			FOR L	ABOR	RATORY			<u> </u>					N	009	35
OLDENROD-SITE NO. 39150 (9/95		COPY	<u> </u>	<del></del>	-					DAT	E:					TIM	1E:	<u> </u>						


# **APPENDIX H**

**SOIL LABORATORY DATA SHEETS** 



Quanterra Incorporated 5910 Breckenridge Parkway, Suite H Tampa, Florida 33610

813 621-0784 Telephone 813 623-6021 Fax



# **ANALYTICAL REPORT**

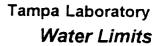
PROJECT NO. 7648

(NAS) Whiting Field

Lot #: B7K250141

Paul Calligan

Brown & Root Environmental


#### QUANTERRA INCORPORATED

Certification Numbers: E84059, HRS84297

FDEP CompQAP: 870270G

Nancy Robertson Project Manager

December 10, 1997





		MDL	Reporting Limit	
FL-DEP FL-PRO				
Total Petroleum Hydrocarbons	Q743	0.1 mg/L	0.5 mg/L	
SW846 8020A				
Benzene	71-43-2	0.17 ug/L	1.0 ug/L	
Chlorobenzene	108-90-7	0.21 ug/L	1.0 ug/L	
1,2-Dichlorobenzene	95-50-1	0.16 ug/L	l.O ug/L	
1,3-Dichlorobenzene	541-73-1	0.16 ug/L	1.0 ug/L	
1,4-Dichlorobenzene	106-46-7	0.18 ug/L	1.0 ug/L	
Ethylbenzene	100-41-4	0.17 ug/L	1.0 ug/L	
Methyl tert-butyl ether	1634-04-4	0.47 ug/L	1.0 ug/L	
Naphthalene	91-20-3	0.94 ug/L	2.0 ug/L	
Toluene	108-88-3	0.14 ug/L	1.0 ug/L	
m-Xylene & p-Xylene	136777-61-2	0.29 ug/L	1.0 ug/L	
o-Xylene	95-47-6	0.15 ug/L	1.0 ug/L	
Xylenes, Total	1330-20-7	0.43 ug/L	1.0 ug/L	
SW846 8310				
Acenaphthene	83-32-9	0.32 ug/L	1.0 ug/L	
Acenaphthylene	208-96-8	0.38 ug/L	1.0 ug/L	
Anthracene	120-12-7	0.21 ug/L	1.0 ug/L	
Benzo[a]anthracene	56-55-3	0.035 ug/L	0.1 ug/L	
Benzo[b]fluoranthene	205-99-2	0.079 ug/L	0.1 ug/L	
Benzo[k]fluoranthene	207-08-9	0.043 ug/L	0.15 ug/L	
Benzo[g,h,i]perylene	191-24-2	0.1 <b>ug/L</b>	0.2 ug/L	
Benzo[a]pyrene	50-32-8	0.04 ug/L	0.1 ug/L	
Chrysene	218-01-9	0.034 ug/L	0.1 ug/L	
Dibenz(a,h)anthracene	53-70-3	0.11 ug/L	0.2 ug/L	
Fluoranthene	206-44-0	0.053 ug/L	0.2 ug/L	
Fluorene	86-73- <b>7</b>	0.82 ug/L	2.0 ug/L	
Indeno[1,2,3-cd]pyrene	193-39-5	0.014 ug/L	0.1 ug/L	
2-Methylnaphthalene	91-57-6	0.39 ug/L	1.0 ug/L	
l-Methylnaphthalene	90-12-0	0.38 ug/L	1.0 ug/L	
Naphthalene	91-20-3	0.41 ug/L	1.0 ug/L	
Phenanthrene	85-01-8	0.27 ug/L	1.0 ug/L	
Pyrene	129-00-0	0.068 ug/L	0.2 ug/L	



		MDL	Reporting Limit	
L-DEP FL-PRO				
Total Petroleum Hydrocarbons	Q743	3.5 mg/kg	10.0 mg/kg	
SW846 8020A			3.3	
Benzene	71-43-2	0.58 ug/kg	2.0 ug/kg	
Chlorobenzene	108-90-7	0.89 ug/kg	2.0 ug/kg	
1,2-Dichlorobenzene	95-50-1	1.0 ug/kg	2.0 ug/kg	
1,3-Dichlorobenzene	541-73-1	0.92 ug/kg	2.0 ug/kg	
1,4-Dichlorobenzene	106-46-7	0.95 ug/kg	2.0 ug/kg	
Ethylbenzene	100-41-4	0.45 ug/kg	2.0 ug/kg	
Methyl tert-butyl ether	1634-04-4	1.1 ug/kg	2.0 ug/kg	
Naphthalene	91-20-3	2.1 ug/kg	5.0 ug/kg	
Toluene	108-88-3	0.43 ug/kg	2.0 ug/kg	
m-Xylene & p-Xylene	136777-61-2	0.87 ug/kg	2.0 ug/kg	
o-Xylene	95-47-6	0.47 ug/kg	2.0 ug/kg	
Xylenes, Totai	1330-20-7	0.47 ug/kg	2.0 ug/kg	
SW846 8310				
Acenaphthene	83-32-9	13.0 ug/kg	50.0 ug/kg	
Acenaphthylene	208-96-8	17.0 ug/kg	50.0 ug/kg	
Anthracene	120-12-7	11.0 ug/kg	50.0 ug/kg	•
Benzo[a]anthracene	56-55-3	1.3 ug/kg	5.0 ug/kg	
Benzo[b]fluoranthene	205-99-2	1.7 ug/kg	5.0 ug/kg	
Benzo[k]fluoranthene	207-08-9	1.1 ug/kg	5.0 ug/kg	
Benzo[g,h,i]perylene	191-24-2	1.9 ug/kg	5.0 ug/kg	
Benzo[a]pyrene	50-32-8	1.3 ug/kg	5.0 ug/kg	
Chrysene	218-01-9	1.0 ug/kg	5.0 ug/kg	
Dibenz(a,h)anthracene	53-70-3	3.1 ug/kg	5.0 ug/kg	
Fluoranthene	206-44-0	2.9 ug/kg	5.0 ug/kg	
Fluorene	86-73-7	17.0 ug/kg	50.0 ug/kg	
Indeno[1,2,3-cd]pyrene	193-39-5	1.0 ug/kg	5.0 ug/kg	
2-Methylnaphthalene	91-57-6	1.2 ug/kg	50.0 ug/kg	
1-Methylnaphthalene	90-12-0	14.0 ug/kg	50.0 ug/kg	
Naphthalene	91-20-3	14.0 ug/kg	50.0 ug/kg	
Phenanthrene	85-01-8	12.0 ug/kg	50.0 ug/kg	
Pyrene	129-00-0	2.3 ug/kg	5.0 ug/kg	



# **METHODS SUMMARY**

# B7K250141

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Aromatic Volatile Organics by GC Aromatic Volatile Organics by GC Petroleum Range Organics Polynuclear Aromatic Hydrocarbons by HPLC Polynuclear Aromatic Hydrocarbons by HPLC Total Residue as Percent Solids	SW846 8020A SW846 8020A FL-DEP FL-PRO SW846 8310 SW846 8310 MCAWW 160.3 MOD	SW846 5030 SW846 3520 SW846 3540 MCAWW 160.3 MOD

# References:

FL-DEP	State of Florida Department of Environmental Protection, Florida Administrative Code.
MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.



Client Sample ID: OWS-SS-SB05-0506

#### GC Volatiles

Lot-Sample #...: B7K250141-001 Work Order #...: CE8FW101 Matrix..... SOLID

Date Sampled...: 11/19/97 Date Received..: 11/25/97 Prep Date....: 11/30/97 Analysis Date..: 12/01/97

Prep Batch #...: 7335125

Dilution Factor: 1

Initial Wgt/Vol: 100 uL Final Wgt/Vol..: 5 mL * Moisture....: 14

REPORTING PARAMETER RESULT LIMIT UNITS METHOD Methyl tert-butyl ether ND 0.29 mg/kg SW846 8020A Benzene ND 0.29 mg/kg SW846 8020A Ethylbenzene 5.0 0.29 SW846 8020A mg/kg Toluene 0.30 0.29 mg/kg SW846 8020A Chlorobenzene ND 0.29 mg/kg SW846 8020A 1,2-Dichlorobenzene ND 0.29 mg/kg SW846 8020A 1,3-Dichlorobenzene ND 0.29 mg/kg SW846 8020A 1,4-Dichlorobenzene ND 0.29 mg/kg SW846 8020A Xylenes (total) 2.9 0.29 mg/kg SW846 8020A PERCENT RECOVERY TURROGATE RECOVERY LIMITS -Bromofluorobenzene 97 (70 - 130)

NOTE(S):



Client Sample ID: OWS-SS-SB05-0506

GC Semivolatiles

Lot-Sample #...: B7K250141-001 Work Order #...: CE8FW103 Matrix..... SOLID

**Date Sampled...:** 11/19/97 Date Received..: 11/25/97 **Prep Date....:** 11/26/97 Analysis Date..: 12/01/97

Prep Batch #...: 7330223

Dilution Factor: 1 Initial Wgt/Vol: 30 g Final Wgt/Vol..: 2 mL

* Moisture....: 14

REPORTING PARAMETER RESULT LIMIT UNITS METHOD TPH (C8-C40) 540 mg/kg FL-DEP FL-PRO

PERCENT RECOVERY SURROGATE RECOVERY LIMITS o-Terphenyl 93 (22 - 166) Nonatriacontane 48 (10 - 192)

NOTE(S):



Client Sample ID: OWS-SS-SB05-0506

#### HPLC

Lot-Sample #...: B7K250141-001 Work Order #...: CE8FW102 Matrix....: SOLID

**Date Sampled...:** 11/19/97 Date Received..: 11/25/97 Prep Date....: 12/02/97 Analysis Date..: 12/05/97

Prep Batch #...: 7336192

Dilution Factor: 1 Initial Wgt/Vol: 30 g Final Wgt/Vol..: 1 mL

*** Moisture....:** 14

PARAMETER		REPORTING		
	RESULT	LIMIT	UNITS	METHOD
Acenaphthene	ND	58	ug/kg	SW846 8310
Acenaphthylene	ND	58	ug/kg	SW846 8310
Anthracene	ND	58	ug/kg	SW846 8310
Benzo(a)anthracene	ND	5.8	ug/kg	SW846 8310
Benzo(a)pyrene	ND	5.8	ug/kg	SW846 8310
Benzo(b)fluoranthene	ND	5.8	ug/kg	SW846 8310
Benzo(ghi)perylene	ND	5.8	ug/kg	SW846 8310
Benzo(k)fluoranthene	ND	5.8	ug/kg	SW846 8310
Chrysene	ND	5.8	ug/kg	SW846 8310
Dibenz(a,h)anthracene	ND	5.8	ug/kg	· · · · · - <del></del>
Fluoranthene	ND	5.8	ug/kg ug/kg	SW846 8310
luorene	150	58		SW846 8310
ndeno(1,2,3-cd)pyrene	ND	5.8	ug/kg	SW846 8310
1-Methylnaphthalene	1800	- · -	ug/kg	SW846 8310
2-Methylnaphthalene		58	ug/kg	SW846 8310
Naphthalene	2000	58	ug/kg	SW846 8310
	490	58	ug/kg	SW846 8310
Phenanthrene	ND	58	ug/kg	SW846 8310
Pyrene	ND	5.8	ug/kg	SW846 8310
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Carbazole	70	(30 - 130)		

NOTE(S):



Client Sample ID: OWS-SS-SB05-0506D

# GC Volatiles

Lot-Sample #...: B7K250141-002 Work Order #...: CE8G5101

**Date Sampled...:** 11/19/97

Date Received..: 11/25/97

Matrix..... SOLID

**Prep Date....:** 12/03/97

Analysis Date..: 12/03/97

Prep Batch #...: 7336257

Final Wgt/Vol..: 5 mL

Dilution Factor: 1 *** Moisture....:** 14

Initial Wgt/Vol: 1 g

PARAMETER	RESULT	REPORTING LIMIT	IDITEC	
Methyl tert-butyl ether	ND G	5.8	UNITS	METHOD
Benzene	ND G	5.8	ug/kg ug/kg	SW846 8020A
Ethylbenzene	ND G	5.8	ug/kg	SW846 8020A SW846 8020A
Toluene	7.1 G	5.8	ug/kg	SW846 8020A
Chlorobenzene	ND G	5.8	ug/kg	SW846 8020A
1,2-Dichlorobenzene	ND G	5.8	ug/kg	SW846 8020A
1,3-Dichlorobenzene	ND G	5.8	ug/kg	SW846 8020A
1,4-Dichlorobenzene	ND G	5.8	ug/kg	SW846 8020A
Xylenes (total)	ND G	5.8	ug/kg	SW846 8020A
		•		
SURROGATE 4-Bromofluorobenzene	PERCENT RECOVERY 84	RECOVERY LIMITS (70 - 130)		

# NOTE(S):

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.



# Client Sample ID: OWS-SS-SB05-0506D

#### GC Semivolatiles

Lot-Sample #...: B7K250141-002 Work Order #...: CE8G5103 Matrix.....: SOLID

Date Sampled...: 11/19/97 Date Received..: 11/25/97
Prep Date....: 11/26/97 Analysis Date..: 12/01/97

Prep Batch #...: 7330223

Dilution Factor: 1 Initial Wgt/Vol: 30 g Final Wgt/Vol.: 2 mL

*** Moisture....:** 14

 PARAMETER
 RESULT
 LIMIT
 UNITS
 METHOD

 TPH (C8-C40)
 130
 12
 mg/kg
 FL-DEP FL-PRO

 SURROGATE
 RECOVERY
 LIMITS

 o-Terphenyl
 94
 (22 - 166)

 Nonatriacontane
 65
 (10 - 192)

NOTE(S):



Client Sample ID: OWS-SS-SB05-0506D

#### HPLC

Lot-Sample #...: B7K250141-002 Work Order #...: CE8G5102 Matrix..... SOLID

Date Sampled...: 11/19/97 Date Received..: 11/25/97 Prep Date....: 12/02/97 Analysis Date..: 12/05/97

Prep Batch #...: 7336192

Dilution Factor: 1 Initial Wgt/Vol: 30 g Final Wgt/Vol..: 1 mL

* Moisture....: 14

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acenaphthene	ND	58	ug/kg	SW846 8310
Acenaphthylene	ND	58	ug/kg	SW846 8310
Anthracene	ND	58	ug/kg	SW846 8310
Benzo(a)anthracene	ND	5.8	ug/kg	SW846 8310
Benzo(a)pyrene	ND	5.8	ug/kg	SW846 8310
Benzo(b) fluoranthene	ND	5.8	ug/kg	SW846 8310
Benzo(ghi)perylene	ND	5.8	ug/kg	SW846 8310
Benzo(k) fluoranthene	ND	5.8	ug/kg	SW846 8310
Chrysene	ND	5.8	ug/kg	SW846 8310
Dibenz(a,h)anthracene	ND	5.8	ug/kg	SW846 8310
Fluoranthene	ND	5.8	ug/kg	SW846 8310
Fluorene	ND	58	ug/kg	SW846 8310
Indeno(1,2,3-cd)pyrene	ND	5.8	ug/kg	SW846 8310
1-Methylnaphthalene	93	58	ug/kg	SW846 8310
2-Methylnaphthalene	110	58	ug/kg	SW846 8310
Naphthalene	30 J	58	ug/kg	SW846 8310
Phenanthrene	ND	58	ug/kg	SW846 8310
Pyrene	ND	5.8	ug/kg	SW846 8310
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Carbazole	91	(30 - 130)	-	

# NOTE(S):

J Estimated result. Result is less than RL.



SW846 8020A

#### BROWN & ROOT ENVIRONMENTAL

Client Sample ID: OWS-SS-SB01-1112

#### GC Volatiles

Lot-Sample #...: B7K250141-003 Work Order #...: CE8G8101 Matrix..... SOLID

Date Sampled...: 11/19/97 Date Received..: 11/25/97 Analysis Date..: 12/01/97

Prep Date....: 11/30/97 Prep Batch #...: 7335125

Dilution Factor: 1 Initial Wgt/Vol: 100 uL Final Wgt/Vol..: 5 mL

*** Moisture....:** 17

#### PARAMETER RESULT LIMIT UNITS METHOD Methyl tert-butyl ether ND 0.30 mg/kg SW846 8020A Benzene ND 0.30 mg/kg SW846 8020A Ethylbenzene 2.8 0.30 mg/kg SW846 8020A Toluene 0.053 J 0.30 mg/kg SW846 8020A Chlorobenzene ND 0.30 mg/kg SW846 8020A 1,2-Dichlorobenzene ND 0.30 mg/kg SW846 8020A 1,3-Dichlorobenzene ND 0.30 mg/kg SW846 8020A 1,4-Dichlorobenzene ND 0.30 mg/kg SW846 8020A

REPORTING

0.30

mg/kg

	PERCENT	RECOVERY
GURROGATE	RECOVERY	LIMITS
-Bromofluorobenzene	96	(70 - 130)

4.6

#### NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Xylenes (total)

J Estimated result. Result is less than RL.



Client Sample ID: OWS-SS-SB01-1112

# GC Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	11/19/97 11/26/97	Work Order Date Recei Analysis D	ved:	11/25/97	Matrix	SOLID
Dilution Factor: * Moisture:	10	Initial Wg	t/Vol:	30 g	Final	Wgt/Vol: 2 mL
PARAMETER		RESULT		REPORTING LIMIT	UNITS	METHOD

			ONTIS	METHOD
TPH (C8-C40)	3800	120	mg/kg	FL-DEP FL-PRO
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
o-Terphenyl	NC, SRD	(22 - 166)	•	
Nonatriacontane	NC, SRD	(10 - 192)		

# NOTE(S):

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery. Results and reporting limits have been adjusted for dry weight.

NC The recovery and RPD were not calculated.



Client Sample ID: OWS-SS-SB01-1112

#### HPLC

Lot-Sample #...: B7K250141-003 Work Order #...: CE8G8102 Matrix.....: SOLID

Date Sampled...: 11/19/97 Date Received..: 11/25/97
Prep Date....: 12/02/97 Analysis Date..: 12/08/97

Prep Batch #...: 7336192

Dilution Factor: 10 Initial Wgt/Vol: 30 g Final Wgt/Vol.:: 1 mL

*** Moisture....:** 17

		REPORTIN	1G	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acenaphthene	ND	600	ug/kg	SW846 8310
Acenaphthylene	ND	600	ug/kg	SW846 8310
Anthracene	ND	600	ug/kg	SW846 8310
Benzo(a)anthracene	ND	60	ug/kg	SW846 8310
Benzo(a)pyrene	ND	60	ug/kg	SW846 8310
Benzo(b)fluoranthene	ND	60	ug/kg	SW846 8310
Benzo(ghi)perylene	ND	60	ug/kg	SW846 8310
Benzo(k)fluoranthene	ND	60	ug/kg	SW846 8310
Chrysene	ND	60	ug/kg	SW846 8310
Dibenz(a,h)anthracene	ND	60	ug/kg	SW846 8310
Fluoranthene	ND	60	ug/kg	SW846 8310
Fluorene	430 J	600	ug/kg	SW846 8310
ndeno(1,2,3-cd)pyrene	ND	60	ug/kg	SW846 8310
l-Methylnaphthalene	6800	600	ug/kg	SW846 8310
2-Methylnaphthalene	8900	600	ug/kg	SW846 8310
Naphthalene	3100	600	ug/kg	SW846 8310
Phenanthrene	ND	600	ug/kg	SW846 8310
Pyrene	ND	60	ug/kg	SW846 8310
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Carbazole	NC, SRD	(30 - 13	0)	

#### NOTE(S):

NC The recovery and RPD were not calculated.

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery. Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.



Client Sample ID: OWS-SS-SB09-0506

#### GC Volatiles

Lot-Sample #...: B7K250141-004 Work Order #...: CE8GE101 Matrix..... SOLID

**Date Sampled...:** 11/19/97 Date Received..: 11/25/97 **Prep Date....:** 12/03/97 . Analysis Date..: 12/03/97

Prep Batch #...: 7336257

Dilution Factor: 1 Initial Wgt/Vol: 2.5 g Final Wgt/Vol..: 5 mL

*** Moisture....:** 13

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD
Methyl tert-butyl ether	ND	2.3	ug/kg	SW846 8020A
Benzene	NĎ	2.3	ug/kg	SW846 8020A
Ethylbenzene	ND	2.3	ug/kg	SW846 8020A
Toluene	ND	2.3	ug/kg	SW846 8020A
Chlorobenzene	ND	2.3	ug/kg	SW846 8020A
1,2-Dichlorobenzene	ND	2.3	ug/kg	SW846 8020A
1,3-Dichlorobenzene	ND	2.3	ug/kg	SW846 8020A
1,4-Dichlorobenzene	ND	2.3	ug/kg	SW846 8020A
Xylenes (total)	ND	2.3	ug/kg	SW846 8020A
		•		
SURROGATE 4-Bromofluorobenzene	PERCENT RECOVERY 83	RECOVERY LIMITS (70 - 130)		

NOTE(S):



Client Sample ID: OWS-SS-SB09-0506

# GC Semivolatiles

Lot-Sample #: B7K250141-004 Date Sampled: 11/19/97 Prep Date: 11/26/97 Prep Batch #: 7330223	Work Order #: Date Received: Analysis Date:	11/25/97	Matrix	SOLID
Dilution Factor: 1	Initial Wgt/Vol:	30 g	Final	Wgt/Vol: 2 mL
% Moisture: 13				
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
TPH (C8-C40)	5.7 J	12	mg/kg	FL-DEP FL-PRO
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
o-Terphenyl	95	(22 - 166)	-	
Nonatriacontane	72	(10 - 192)		

NOTE(S):

J Estimated result. Result is less than RL.



Client Sample ID: OWS-SS-SB09-0506

#### HPLC

Lot-Sample #...: B7K250141-004 Work Order #...: CE8GE102

Matrix....: SOLID

**Date Sampled...:** 11/19/97

Date Received..: 11/25/97

Prep Date....: 12/02/97

Analysis Date..: 12/05/97

Prep Batch #...: 7336192

Dilution Factor: 1

Initial Wgt/Vol: 30 g

Final Wgt/Vol..: 1 mL

* Moisture....: 13

	REPORTING		-
RESULT	LIMIT	UNITS	METHOD
ND	58	ug/kg	SW846 8310
ND	58	ug/kg	SW846 8310
ND	58	ug/kg	SW846 8310
ND	5.8	ug/kg	SW846 8310
ND	5.8	ug/kg	SW846 8310
ND	5.8	ug/kg	SW846 8310
ND	5.8	ug/kg	SW846 8310
ND	5.8	ug/kg	SW846 8310
ND	5.8	ug/kg	SW846 8310
ND	5 8	ug/kg	SW846 8310
ND	5.8	ug/kg	SW846 8310
ND	58	ug/kg	SW846 8310
ND	5.8	ug/kg	SW846 8310
ND	58	ug/kg	SW846 8310
ND	58	ug/kg	SW846 8310
ND	58	ug/kg	SW846 8310
ND	58	ug/kg	SW846 8310
ND	5.8	ug/kg	SW846 8310
PERCENT	RECOVERY		
RECOVERY	LIMITS		
88	(30 - 130)		
	ND N	RESULT         LIMIT           ND         58           ND         58           ND         5.8           ND         58           ND         58           ND         58           ND         58           ND         5.8           PERCENT         RECOVERY           LIMITS	RESULT         LIMIT         UNITS           ND         58         ug/kg           ND         58         ug/kg           ND         58         ug/kg           ND         5.8         ug/kg           ND         58         ug/kg           ND         58

#### NOTE(S):



Client Sample ID: PDF-SS-SB01-0708

#### GC Volatiles

Lot-Sample #...: B7K250141-005 Work Order #...: CE8GJ101 Matrix..... SOLID

Prep Batch #...: 7336257

Dilution Factor: 1 Initial Wgt/Vol: 2.5 g Final Wgt/Vol.: 5 mL

* Moisture....: 13 Method.....: SW846 8020A

PARAMETER	RESULT	REPORTING LIMIT	Units
Methyl tert-butyl ether	ND	2.3	ug/kg
Benzene	ND	2.3	ug/kg
Ethylbenzene	ND	2.3	ug/kg
Toluene	ND	2.3	ug/kg
Chlorobenzene	ND	2.3	ug/kg
1,2-Dichlorobenzene	ND	2.3	ug/kg
1,3-Dichlorobenzene	ND	2.3	ug/kg
1,4-Dichlorobenzene	ND	2.3	ug/kg
Xylenes (total)	ND	2.3	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Fromofluorobenzene	84	(70 - 130)	

NOTE(S):



Client Sample ID: PDF-SS-SB01-0708

# GC Semivolatiles

Lot-Sample #: B7K250141-005 Date Sampled: 11/20/97 Prep Date: 11/26/97	Work Order #: Date Received: Analysis Date:	11/25/97	Matrix soLID
Prep Batch #: 7330223 Dilution Factor: 1 * Moisture: 13	Initial Wgt/Vol:	30 g FL-DEP FL-I	Final Wgt/Vol: 2 mL PRO
PARAMETER TPH (C8-C40)	RESULT ND	REPORTING LIMIT 12	UNITS mg/kg
SURROGATE  o-Terphenyl  Nonatriacontane	PERCENT RECOVERY 91 65	RECOVERY <u>LIMITS</u> (22 - 166) (10 - 192)	

Note (s) :



Client Sample ID: PDF-SS-SB01-0708

#### HPLC

Lot-Sample #...: B7K250141-005 Work Order #...: CESGJ102 Matrix.....: SOLID

Date Sampled...: 11/20/97 Date Received..: 11/25/97
Prep Date....: 12/02/97 Analysis Date..: 12/05/97

Prep Batch #...: 7336192

Dilution Factor: 1 Initial Wgt/Vol: 30 g Final Wgt/Vol.: 1 mL

* Moisture....: 13 Method.....: SW846 8310

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Acenaphthene	ND	58	ug/kg	
Acenaphthylene	ND	58	ug/kg	
Anthracene	ND	58	ug/kg	
Benzo (a) anthracene	ND	5.8	ug/kg	
Benzo(a) pyrene	ND	5.8	ug/kg	
Benzo (b) fluoranthene	ND	5.8	ug/kg	
Benzo (ghi) perylene	ND	5.8	ug/kg	
Benzo (k) fluoranthene	ND	5.8	ug/kg	
Chrysene	ND	5.8	ug/kg	
Dibenz(a,h)anthracene	ND	5.8	ug/kg	
Fluoranthene	ND	5.8	ug/kg	
Fluorene	ND	58	ug/kg	
indeno(1,2,3-cd)pyrene	ND	5.8	ug/kg	
Methylnaphthalene	ND	58	ug/kg	
2-Methylnaphthalene	ND	58	ug/kg	
Naphthalene	ND	58	ug/kg	
Phenanthrene	ND	58	ug/kg	
Pyrene	ND	5.8	ug/kg	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Carbazole	91	(30 - 13	0)	

NOTE (S):



Client Sample ID: PDF-SS-SB06-1819

#### GC Volatiles

Lot-Sample #...: B7K250141-006 Work Order #...: CE8GK101 Matrix.....: SOLID

Date Sampled...: 11/20/97 Date Received..: 11/25/97
Prep Date....: 12/03/97 Analysis Date..: 12/03/97

Prep Batch #...: 7336257

Dilution Factor: 1 Initial Wgt/Vol: 2.5 g Final Wgt/Vol.: 5 mL

* Moisture....: 12 Method.....: SW846 8020A

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Methyl tert-butyl ether	ND	2.3	ug/kg
Benzene	ND	2.3	ug/kg
Ethylbenzene	ND	2.3	ug/kg
Toluene	ND	2.3	ug/kg
Chlorobenzene	ND	2.3	ug/kg
1.2-Dichlorobenzene	ND	2.3	ug/kg
1.3-Dichlorobenzene	ND	2.3	ug/kg
1,4-Dichlorobenzene	ND	2.3	ug/k <b>g</b>
Xylenes (total)	ND	2.3	ug/kg
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	<u>Limits</u>	
4-Bromofluorobenzene	83	(70 - 13	0)

NOTE(S):



Client Sample ID: PDF-SS-SB06-1819

#### GC Semivolatiles

Lot-Sample #: B7K250141-006 Date Sampled: 11/20/97 Prep Date: 11/26/97	Work Order #: Date Received: Analysis Date:	11/25/97	Matrix: SOLID
Prep Batch #: 7330223 Dilution Factor: 1 * Moisture: 12	Initial Wgt/Vol: Method:		Final Wgt/Vol: 2 mL
PARAMETER TPH (C8-C40)	RESULT	REPORTING LIMIT UN 11 mg,	ITS /kg

 SURROGATE
 RECOVERY
 LIMITS

 0-Terphenyl
 94
 (22 - 166)

 Nonatriacontane
 62
 (10 - 192)

NOTE (S):



# Client Sample ID: PDF-SS-SB06-1819

#### HPLC

Lot-Sample #...: B7K250141-006 Work Order #...: CE8GK102 Matrix......: SOLID

Date Sampled..: 11/20/97 Date Received.:: 11/25/97
Prep Date....: 12/02/97 Analysis Date..: 12/06/97

Prep Batch #...: 7336192

Dilution Factor: 1 Initial Ngt/Vol: 30 g Final Ngt/Vol.: 1 mL

----

* Moisture....: 12 Method.....: SW846 8310

		reporting	
ARAMETER	RESULT	LIMIT	UNITS
cenaphthene	ND	57	ug/kg
cenaphthylene	ND	57	ug/kg
nthracene	ND	5 <b>7</b>	ug/kg
nzo(a) anthracene	ND	5.7	ug/kg
nzo(a)pyrene	ND	5.7	ug/kg
azo(b) fluoranthene	ND	5.7	ug/kg
nzo(ghi)perylene	ND	5.7	ug/kg
nzo(k) fluoranthene	ND	5.7	ug/kg
rysene	ND	5.7	ug/kg
enz (a, h) anthracene	ND	5.7	ug/kg
oranthene	MD	5.7	ug/kg
orene	ND	57	ug/kg
leno(1,2,3-cd)pyrene	ND	5.7	ug/kg
Methylnaphthalene	ND	57	ug/kg
Methylnaphthalene	ND	57	ug/kg
ohthalene	ND	57	ug/kg
nanthrene	ND	57	ug/kg
eue	ND	5.7	ug/kg
	PERCENT	RECOVERY	
RROGATE	RECOVERY	LIMITS	
rbazole	82	(30 - 13	0)

NOTE (S):



Client Sample ID: PDF-SS-SB06-1011

#### GC Volatiles

Lot-sample #...: B7K250141-007 Work Order #...: CE8GL101 Matrix....: SOLID

Date Sampled...: 11/20/97 Date Received..: 11/25/97
Prep Date....: 12/03/97 Analysis Date..: 12/03/97

Prep Batch #...: 7336257

Dilution Factor: 1 Initial Wgt/Vol: 2.5 g Final Wgt/Vol.: 5 mL

t Moisture....: 16 Method.....: SW846 8020A

PARAMETER  Methyl tert-butyl ether  Benzene  Kthylbenzene  Toluene Chlorobenzene  1,2-Dichlorobenzene  1,3-Dichlorobenzene  1,4-Dichlorobenzene  Kylenes (total)	RESULT ND ND 0.60 J 1.3 J ND ND ND ND ND	REPORTING LIMIT 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	UNITS  ug/kg  ug/kg  ug/kg  ug/kg  ug/kg  ug/kg  ug/kg  ug/kg  ug/kg
SURROGATE 4-Bromofluorobenzene	PERCENT RECOVERY 85	RECOVERY LIMITS (70 - 130)	_

NOTE (S):

J Estimated result, Result is less than RL.



## Client Sample ID: PDF-SS-SB06-1011

# GC Semivolatiles

Lot-Sample #: B7K250141-007 Date Sampled: 11/20/97 Prep Date: 11/26/97 Prep Batch #: 7330223 Dilution Factor: 1 * Moisture: 16	Work Order #: Date Received: Analysis Date: Initial Ngt/Vol: Method:	11/25/97 12/01/97 30 g	Matrix: SOLID  Final Wgt/Vol.:: 2 mL
PARAMETER TPH (C8-C40)	RESULT .		ITS/kg
SURROGATE o-Terphenyl	PERCENT RECOVERY 88	RECOVERY LIMITS (22 - 166)	

65

(10 - 192)

NOTE(S):

Nonatriacontane



## Client Sample ID: PDF-SS-SB06-1011

#### HPLC

Matrix..... SOLID Lot-Sample #...: B7K250141-007 Work Order #...: CE8GL102

Date Received..: 11/25/97 Date Sampled...: 11/20/97 Analysis Date..: 12/06/97

Prep Date....: 12/02/97

Prep Batch #...: 7336192 Final Wgt/Vol..: 1 mL Initial Wgt/Vol: 30 g Dilution Factor: 1

Mathod..... SW846 8310 * Moisture....: 16

PARAMETER         RESULT         LIMIT         UNITS           Acenaphthene         ND         59         ug/kg           Acenaphthylene         ND         59         ug/kg           Anthracene         ND         5.9         ug/kg           Benzo (a) anthracene         ND         5.9         ug/kg           Benzo (b) fluoranthene         ND         5.9         ug/kg           Benzo (b) fluoranthene         ND         5.9         ug/kg           Benzo (k) fluoranthene         ND         5.9         ug/kg           Chrysene         ND         5.9         ug/kg           Dibenz (a, h) anthracene         ND         5.9         ug/kg           Fluoranthene         ND         5.9         ug/kg           Fluorene         ND         5.9         ug/kg           fethylnaphthalene         ND         5.9         ug/kg           Naphthalene         ND         59         ug/kg           Phenanthrene         ND         59         ug/kg           Pyrene         ND         5.9         ug/kg			REPORTIN	G
Acenaphthene         ND         59         ug/kg           Acenaphthylene         ND         59         ug/kg           Anthracene         ND         59         ug/kg           Benzo (a) anthracene         ND         5.9         ug/kg           Benzo (a) pyrene         ND         5.9         ug/kg           Benzo (b) fluoranthene         ND         5.9         ug/kg           Benzo (k) fluoranthene         ND         5.9         ug/kg           Chrysene         ND         5.9         ug/kg           Dibenz (a, h) anthracene         ND         5.9         ug/kg           Fluoranthene         ND         5.9         ug/kg           Fluorene         ND         5.9         ug/kg           ieno (1, 2, 3 - cd) pyrene         ND         5.9         ug/kg           2-Methylnaphthalene         ND         59         ug/kg           Naphthalene         ND         59         ug/kg           Phenanthrene         ND         5.9         ug/kg	AD AMETER	RESULT	LIMIT	
Acenaphthylene  Anthracene  Anthracene  Benzo (a) anthracene  Benzo (a) pyrene  Benzo (b) fluoranthene  Benzo (ghi) perylene  Benzo (k) fluoranthene  ND  S.9  Ug/kg  Chrysene  ND  S.9  Ug/kg  Pluoranthene  ND  S.9  Ug/kg		ND	59	*
Anthracene  Benzo (a) anthracene  Benzo (a) pyrene  Benzo (b) fluoranthene  Benzo (chi) perylene  Benzo (k) fluoranthene  MD  S.9  Ug/kg  Chrysene  MD  S.9  Ug/kg  Dibenz (a, h) anthracene  MD  S.9  Ug/kg  Fluoranthene  MD  S.9  Ug/kg  Fluorene  ND  S.9  Ug/kg  Ug/kg  Fluorene  ND  S.9  Ug/kg  Ug/kg  Vg/kg	<del>-</del>	ND	5 <b>9</b>	
Benzo (a) anthracene         ND         5.9         ug/kg           Benzo (a) pyrene         ND         5.9         ug/kg           Benzo (b) fluoranthene         ND         5.9         ug/kg           Benzo (ghi) perylene         ND         5.9         ug/kg           Benzo (k) fluoranthene         ND         5.9         ug/kg           Chrysene         ND         5.9         ug/kg           Dibenz (a, h) anthracene         ND         5.9         ug/kg           Fluoranthene         ND         5.9         ug/kg           Fluorene         ND         5.9         ug/kg           ieno (1, 2, 3-cd) pyrene         ND         5.9         ug/kg           ethylnaphthalene         ND         59         ug/kg           Naphthalene         ND         59         ug/kg           Phenanthrene         ND         59         ug/kg		ND	59	<b>*</b> · · · -
Benzo (a) pyrene         ND         5.9         ug/kg           Benzo (b) fluoranthene         ND         5.9         ug/kg           Benzo (ghi) perylene         ND         5.9         ug/kg           Benzo (k) fluoranthene         ND         5.9         ug/kg           Chrysene         ND         5.9         ug/kg           Dibenz (a, h) anthracene         ND         5.9         ug/kg           Fluoranthene         ND         5.9         ug/kg           Fluorene         ND         5.9         ug/kg           ieno (1, 2, 3-cd) pyrene         ND         5.9         ug/kg           2-Methylnaphthalene         ND         59         ug/kg           Naphthalene         ND         59         ug/kg           Phenanthrene         ND         59         ug/kg		ND	5.9	
Benzo (b) fluoranthene         ND         5.9         ug/kg           Benzo (ghi) perylene         ND         5.9         ug/kg           Benzo (k) fluoranthene         ND         5.9         ug/kg           Chrysene         ND         5.9         ug/kg           Dibenz (a, h) anthracene         ND         5.9         ug/kg           Fluoranthene         ND         5.9         ug/kg           Fluorene         ND         59         ug/kg           ieno (1, 2, 3-cd) pyrene         ND         59         ug/kg           iethylnaphthalene         ND         59         ug/kg           Naphthalene         ND         59         ug/kg           Phenanthrene         ND         59         ug/kg		ND	5.9	-
Benzo (ghi) perylene         ND         5.9         ug/kg           Benzo (k) fluoranthene         ND         5.9         ug/kg           Chrysene         ND         5.9         ug/kg           Dibenz (a, h) anthracene         ND         5.9         ug/kg           Fluoranthene         ND         5.9         ug/kg           Fluorene         ND         59         ug/kg           ieno (1, 2, 3-cd) pyrene         ND         5.9         ug/kg           iethylnaphthalene         ND         59         ug/kg           2-Methylnaphthalene         ND         59         ug/kg           Naphthalene         ND         59         ug/kg           Phenanthrene         ND         59         ug/kg		ND	5.9	
Benzo (k) fluoranthene         ND         5.9         ug/kg           Chrysene         ND         5.9         ug/kg           Dibenz (a, h) anthracene         ND         5.9         ug/kg           Fluoranthene         ND         5.9         ug/kg           Fluorene         ND         59         ug/kg           ieno (1, 2, 3-cd) pyrene         ND         5.9         ug/kg           iethylnaphthalene         ND         59         ug/kg           2-Methylnaphthalene         ND         59         ug/kg           Naphthalene         ND         59         ug/kg           Phenanthrene         ND         59         ug/kg		ИD	5.9	
Chrysene         ND         5.9         ug/kg           Dibenz (a, h) anthracene         ND         5.9         ug/kg           Fluoranthene         ND         5.9         ug/kg           Fluorene         ND         59         ug/kg           ieno (1, 2, 3-cd) pyrene         ND         5.9         ug/kg           iethylnaphthalene         ND         59         ug/kg           2-Methylnaphthalene         ND         59         ug/kg           Naphthalene         ND         59         ug/kg           Phenanthrene         ND         59         ug/kg		ND	5.9	ug/k <b>g</b>
Dibenz (a, h) anthracene         ND         5.9         ug/kg           Fluoranthene         ND         5.9         ug/kg           Fluorene         ND         59         ug/kg           ieno (1, 2, 3 - cd) pyrene         ND         5.9         ug/kg           iethylnaphthalene         ND         59         ug/kg           2-Methylnaphthalene         ND         59         ug/kg           Naphthalene         ND         59         ug/kg           Phenanthrene         ND         59         ug/kg		ND	5.9	-
Fluoranthene ND 5.9 ug/kg Fluorene ND 59 ug/kg ieno(1,2,3-cd)pyrene ND 5.9 ug/kg iethylnaphthalene ND 59 ug/kg 2-Methylnaphthalene ND 59 ug/kg Naphthalene ND 59 ug/kg Phenanthrene ND 59 ug/kg		ND	5.9	ug/kg
Fluorene ND 59 ug/kg ieno(1,2,3-cd)pyrene ND 5.9 ug/kg iethylnaphthalene ND 59 ug/kg 2-Methylnaphthalene ND 59 ug/kg Naphthalene ND 59 ug/kg Phenanthrene ND 59 ug/kg		ND	5.9	
ieno (1,2,3-cd) pyrene ND 5.9 ug/kg iethylnaphthalene ND 59 ug/kg 2-Methylnaphthalene ND 59 ug/kg Naphthalene ND 59 ug/kg Phenanthrene ND 59 ug/kg		ND	59	
iethylnaphthalene ND 59 ug/kg 2-Methylnaphthalene ND 59 ug/kg Naphthalene ND 59 ug/kg Naphthalene ND 59 ug/kg Phenanthrene ND 59 ug/kg		ND	5.9	ug/kg
2-Methylnaphthalene ND 59 ug/kg Naphthalene ND 59 ug/kg Phenanthrene ND 59 ug/kg		ND	59	ug/kg
Naphthalene ND 59 ug/kg Phenanthrene ND 59 ug/kg		ND	5 <b>9</b>	ug/kg
Phenanthrene ND 59 ug/kg		ND	59	ug/kg
5.9 Uq/kq	•	ND	59	ug/kg
Pyrene		ND	5.9	ug/kg
	Pyrene			
PERCENT RECOVERY		PERCENT	RECOVERY	?
SURROGATE RECOVERY LIMITS	CITE DOCATE	RECOVERY	LIMITS	
Carbazole 90 (30 - 130)			(30 - 13	10)

NOTE (S):



#### PROMINE ROOT ENVIRONMENTAL

#### Client Sample ID: PPS-SS-SB01-0405B

#### GC Volatiles

Lot-Sample #...: B7K250141-011 Work Order #...: CE8GT101 Matrix..... WATER

Date Sampled...: 11/23/97 Date Received..: 11/25/97 Prep Date....: 12/01/97 Analysis Date..: 12/01/97

Prep Batch #...: 7337270

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8020A

		REPORTIN	Œ
PARAMETER	<u>result</u>	LIMIT	UNITS
Methyl tert-butyl ether	ND	1.0	ug/L
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	0.19 J	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
1,2-Dichlorobenzene	ИD	1.0	ug/L
1,3-Dichlorobenzene	0.24 J	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	97	(70 - 130	0)

#### NOTE(S):

I Estimated result. Result is less than RL.



#### Client Sample ID: PPS-SS-SB01-0405B

#### GC Semivolatiles

Lot-Sample #...: B7K250141-011 Work Order #...: CE8GT103 Matrix.....: WATER

Date Sampled...: 11/23/97

Prep Date....: 11/26/97

Analysis Date..: 12/01/97

Prep Batch #...: 7330178

Dilution Factor: 1 Initial Wgt/Vol: 974 mL Final Wgt/Vol.: 2 mL

Method..... FL-DEP FL-PRO

REPORTING

PARAMETER RESULT LIMIT UNITS
TPH (C8-C40) ND 0.50 mg/L

PERCENT RECOVERY

SURROGATE RECOVERY LIMITS

0-Terphenyl 90 (33 - 162)

Nonatriacontane 38 (10 - 109)



#### Client Sample ID: PPS-SS-SB01-0405B

#### HPLC

Lot-Sample #...: B7K250141-011 Work Order #...: CESGT102 Matrix..... WATER

Date Sampled...: 11/23/97 Date Received..: 11/25/97 Analysis Date..: 12/02/97 Prep Date....: 11/26/97

Prep Batch #...: 7330158

Initial Wgt/Vol: 981 mL Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Method..... SW846 8310

	rection	57640 0.	,10
		REPORTIN	īG
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	1.0	ug/L
Acenaphthylene	ND	1.0	ug/L
Anthracene	ND	1.0	ug/L
Benzo (a) anthracene	NED	0.092	ug/L
Benzo (a) pyrene	ND	0.10	ug/L
Benzo(b) fluoranthene	ND	0.092	ug/L
Benzo(ghi)perylene	ND	0.20	ug/L
Benzo(k) fluoranthene	ND	0.15	ug/L
Chrysene	ND	0.10	ug/L
Dibenz(a,h) anthracene	ND	0.20	ug/L
Fluoranthene	ND	0.20	ug/L
luorene	ND	2.0	ug/L
Indeno(1,2,3-cd)pyrene	NID	0.092	ug/L
l-Methylnaphthalene	ND	1.0	ug/L
2-Methylnaphthalene	ND	1.0	ug/L
Maphthalene	ND	1.0	ug/L
Phenanthrene	ND	1.0	ug/L
Pyrene	ND	0.20	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	<u>LIMITS</u>	_
		700 00	

Carbazole 79 (30 - 130)



Client Sample ID: PPS-SS-SB01-0405

#### GC Volatiles

Lot-Sample #...: B7K250141-012 Work Order #...: CE8GW101 Matrix.....: SOLID

Date Sampled...: 11/23/97 Date Received..: 11/25/97
Prep Date....: 12/03/97 Analysis Date..: 12/03/97

Prep Batch #...: 7336257

Dilution Factor: 1 Initial Wgt/Vol: 1 g Final Wgt/Vol.: 5 mL

* Moisture....: 14 Method.....: SW846 8020A

PARAMETER	RESULT	reporting Limit	units
Methyl tert-butyl ether	ND G	5.8	ug/kg
Benzene	10 G	5.8	ug/kg
Ethylbenzene	6.6 G	5.8	ug/kg
Toluene	69 G	5.8	ug/kg
Chlorobenzene	ND G	5.8	ug/kg
1.2-Dichlorobenzene	ND G	5.8	ug/kg
1.3-Dichlorobenzene	ND G	5.8	ug/kg
1.4-Dichlorobenzene	ND G	5.8	ug/kg
Xylenes (total)	110 G	5.8	ug/kg
•	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Bromofluorobenzene	84	(70 - 130	) .

#### NOTE (S):

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.



## Client Sample ID: PPS-SS-SB01-0405

## GC Semivolatiles

Lot-Sample #: B7K250141-012 Date Sampled: 11/23/97 Prep Date: 11/26/97	Work Order #: Date Received: Analysis Date:	11/25/97	Matrix SOLID
Prep Batch #: 7330223 Dilution Factor: 1	Initial Wgt/Vol:	30 a	Final Wgt/Vol: 2 mL
t Moisture: 14	Method:	-	
PARAMETER TPH (C8-C40)	RESULT	REPORTING LIMIT 12	UNITS mg/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
o-Terphenyl	91	(22 - 166)	
Nonatriacontane	59	(10 - 192)	

Results and reporting timits have been adjusted for dry weight.

NOTE (S):



Client Sample ID: PPS-SS-SB01-0405

#### HPLC

Lot-Sample #...: 87K250141-012 Work Order #...: CEBGW102 Matrix.....: SOLID

Date Sampled...: 11/23/97

Prep Date....: 12/02/97

Date Received..: 11/25/97

Analysis Date..: 12/06/97

Prep Batch #...: 7336192

* Moisture....: 14 Method.....: SW846 8310

		REPORTIN	ī <b>G</b>
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	58	ug/kg
Acenaphthylene	ND	58	ug/kg
Anthracene	ND	58	ug/kg
Benzo (a) anthracene	ND	5.8	ug/kg
Benzo(a) pyrene	ND	5.8	ug/kg
Benzo (b) fluoranthene	ND	5.8	ug/kg
Benzo (ghi) perylene	ND	5.8	ug/k <b>g</b>
Benzo (k) fluoranthene	ND	5.8	ug/kg
Chrysene	ND	5.8	ug/kg
Dibenz (a, h) anthracene	ND	5.8	ug/kg
Fluoranthene	ND	5.8	ug/kg
Fluorene	ND	58	ug/kg
Indeno(1,2,3-cd)pyrene	ND	5.8	ug/k <b>g</b>
tethylnaphthalene	ND	58	ug/kg
2-Methylnaphthalene	ND	58	ug/kg
Naphthalene	ND	58	ug/kg
Phenanthrene	ND	58	ug/kg
Pyrene	ND	5.8	ug/kg
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS_	
Carbazole	97	(30 - 13	(0)

NOTE(S):



Client Sample ID: PPS-SS-SB01-1011

#### GC Volatiles

Lor-Sample #...: B7K250141-013 Work Order #...: CESGX101 Matrix.....: SOLID

Date Sampled...: 11/23/97
Prep Date....: 12/03/97
Analysis Date..: 12/03/97

Prep Batch #...: 7336257

Dilution Factor: 1 Initial Wgt/Vol: 2.5 g Final Wgt/Vol.: 5 mL

REPORTING

* Moisture....: 12 Method.....: SW846 8020A

		VDE OVE TI	
PARAMETER	RESULT	LIMIT	UNITS
Methyl tert-butyl ether	ND	2.3	ug/kg
Benzene	ND	2.3	ug/kg
Benzene Ethylbenzene	ДИ	2.3	ug/kg
Echylbenzene Toluene	ND	2.3	ug/kg
Chlorobenzene	ND	2.3	ug/kg
1,2-Dichlorobenzene	ND	2.3	ug/kg
1,3-Dichlorobenzene	ND	2.3	ug/kg
1,4-Dichlorobenzene	ND	2.3	ug/kg
Xylenes (total)	0.76 J	2.3	ug/kg
	PERCENT	RECOVERY	?
SURROGATE	RECOVERY	<u>Limits</u>	
4-Bromofluorobenzene	83	(70 - 13	30)

#### Note (s):

I Estimated result. Result is less than RL.



## Client Sample ID: PPS-SS-SB01-1011

#### GC Semivolatiles

Lot-Sample #:		Work Order #: Date Received:		Matrix: SOLID
Date Sampled:				
Prep Date:		Analysis Date:	12/02/97	
Prep Batch #:	7330223			
Dilution Factor:	5	Initial Wgt/Vol:		Final Wgt/Vol: 2 mL
* Moisture:	12	Method:	FL-DEP FL-	PRO
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
TPH (C8-C40)		2300	57	mg/kg
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
o-Terphenyl		NC, SRD	(22 - 166)	
		·	4	

(10 - 192)

#### NOTE(S):

Nonatriacontane

NC The recovery and RPD were not calculated.

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

NC, SRD



Client Sample ID: PPS-88-SB01-1011

#### HPLC

Lot-Sample #: B7K250141-013 Date Sampled: 11/23/97 Prep Date: 12/02/97 Prep Batch #: 7336192	Work Order #: CE8GX102 Date Received: 11/25/97 Analysis Date: 12/08/97	Matrix SOLID
Dilution Factor: 20	Initial Wgt/Vol: 30 g	Final Wort/Vol . 1 mr

Method....: SW846 8310

REPORTING
PARAMETER
RESULT LIMIT UNITS

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthen <del>e</del>	ND	1100	ug/kg
Acenaphthylene	ND	1100	ug/kg
Authracene	690 J	1100	ug/kg
Benzo (a) anthracene	390	110	ug/kg
Benzo (a) pyrene	360	110	ug/kg
Benzo (b) fluoranthene	230	110	ug/kg
Benzo (ghi) perylene	120	110	ug/kg
Benzo(k) fluoranthene	220	110	ug/kg
Chrysene	370	110	ug/kg
Dibenz(a,h)anthracene	ND	110	ug/kg
Fluoranthene	3800	110	ug/kg
Fluorene	1100	1100	ug/kg
Indeno (1,2,3-cd) pyrene	110	110	ug/kg
1-Methylnaphthalene	3900	1100	ug/kg
2-Methylnaphthalene	6000	1100	ug/kg
Naphthalene	2100	1100	
Phenanthrene	4000	1100	ug/kg
Pyrene	1700	1100	ug/kg
•	1700	110	ug/kg
	PERCENT	RECOVERY	
SURROGATE			
Carbazole	RECOVERY	LIMITS	_
	NC, SRD	(30 - 130)	

#### NOTE(S):

NC The recovery and RPD were not calculated.

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery. Results and reporting limits have been adjusted for dry weight.

J Estatuated result. Result is less than RL.



## Client Sample ID: pps-ss-\$B02-1011

#### GC Volatiles

Lot-Sample #...: B7K250141-014 Work Order #...: CE8H8101 Matrix..... SOLID Date Sampled...: 11/23/97 Date Received..: 11/25/97

Prep Date....: 12/03/97 Analysis Date..: 12/03/97

Prep Batch #...: 7336257

Dilution Factor: 1 Initial Wgt/Vol: 2.5 g Final Wgt/Vol..: 5 mL

* Moisture....: 14 Method..... SW846 8020A

PARAMETER	RESULT	REPORTING LIMIT	Units
Methyl tert-butyl ether	ND	2.3	ug/kg
Benzene	ND	2.3	ug/kg
Ethylbenzene	ND	2.3	ug/kg
Toluene	ND	2.3	ug/kg
Chlorobenzene	ND	2.3	ug/kg
1,2-Dichlorobenzene	ND	2.3	ug/kg
1,3-Dichlorobenzene	ND	2.3	ug/kg
1,4-Dichlorobenzene	ND	2.3	ug/kg
Xylenes (total)	1.3 J	2.3	ug/kg
SURROGATE 4-Bromofluorobenzene	PERCENT RECOVERY 83	RECOVERY LIMITS (70 - 130)	

SOTE(S):

I Estimated result. Result is less than RL.



## Client Sample ID: PPS-SS-SB02-1011

## GC Semivolatiles

Lot-Sample #: B7K250141-014 Date Sampled: 11/23/97 Prep Date: 11/26/97 Prep Batch #: 7330223	Work Order #: Data Received: Analysis Date:	11/25/97	Matrix: SOLID
Dilution Factor: 1	Initial Wgt/Vol:	30 gr	Final Wgt/Vol: 2 mL
Moisture: 14	Method:	FL-DEP FL-P	RO
PARAMETER TPH (C8-C40)	RESULT 6.5 J		MITS g/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
o-Terphenyl	89	(22 - 166)	
Nonatriacontane	70	(10 - 192)	

Note (s) :

J Estimated result. Result is less than RL.



#### Client Sample ID: PPS-SS-SB02-1011

#### HPLC

Lot-Sample #...: B7K250141-014 Work Order #...: CESH8102 Matrix.....: SOLID

Date Sampled...: 11/23/97

Prep Date....: 12/02/97

Analysis Date..: 12/06/97

Prep Batch #...: 7336192

Dilution Factor: 1 Initial Wgt/Vol: 30 g Final Wgt/Vol.: 1 mL

TTTOOTHTMA

* Moisture....: 14 Method.....: SW846 8310

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	58	ug/kg
Acenaphthylene	ND	58	ug/kg
Anthracene	ND	58	ug/kg
Benzo (a) anthracene	ND	5.8	ug/kg
Benzo(a)pyrene	ND	5.8	ug/kg
Benzo(b) fluoranthene	ND	5.8	ug/kg
Benzo(ghi)perylene	ND	5.8	ug/kg
Benzo(k) fluoranthene	ND	5.8	ug/kg
Chrysene	ND	5.8	ug/kg
Dibenz (a, h) anthracene	ND	5.8	ug/kg
Fluoranthene	ND	5.8	ug/kg
Fluorene	ND	58	ug/kg
Todeno(1,2,3-cd)pyrene	ND	5.8	ug/kg
fethylnaphthalene	ND	58	ug/kg
∡-Methylnaphthalene	ND	58	ug/kg
Naphthalene	ИD	58	ug/kg
Phenanthrene	ND	58	ug/kg
Pyrene	ND	5.8	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Carbazole	102	(30 - 130	<del>)</del>

NOTE(S):



Client Sample ID: TRIP BLANK

#### GC Volatiles

**Date Sampled...:** 11/23/97

Prep Date....: 12/01/97

Prep Batch #...: 7337270 Dilution Factor: 1

Lot-Sample #...: B7K250141-015 Work Order #...: CE8HC101 Date Received..: 11/25/97

Analysis Date..: 12/01/97

Initial Wgt/Vol: 5 mL

Final Wgt/Vol..: 5 mL

Matrix..... WATER

PARAMETER Methyl tert-butyl ether	RESULT	REPORTING LIMIT	UNITS	METHOD
Benzene	ND	1.0	ug/L	SW846 8020A
= === <b>=</b>	ND	1.0	ug/L	SW846 8020A
Ethylbenzene	ИD	1.0	ug/L	SW846 8020A
Toluene	ND	1.0	ug/L	SW846 8020A
Chlorobenzene	ND	1.0	ug/L	SW846 8020A
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8020A
1,3-Dichlorobenzene	0.23 J	1.0	ug/L	SW846 8020A
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8020A
Xylenes (total)	ND	1.0	ug/L	SW846 8020A
SURROGATE 4-Bromofluorobenzene	PERCENT RECOVERY	RECOVERY LIMITS		
4-promotiuoropenzene	103	(70 - 130)		

#### NOTE(S):

J Estimated result. Result is less than RL.



## **Quality Control Summary**

Quanterra QC Program Summary

Method Blanks

Laboratory Control Samples

Matrix Spike/Matrix Spike Duplicates

Chain-of-Custody



## Quanterra Quality Control Program Summary

Quanterra Environmental Services considers continuous analytical method performance evaluations to be an integral portion of the data package, and routinely includes the pertinent QA/QC data associated with analytical results. Brief discussions of the various QA/QC procedures utilized to measure acceptable method and matrix performance follow. Further documentation of specific policies and procedures in use are available, upon request, from the Quanterra Quality Control Department.

The program described below provides Quanterra's interpretation of QC requirements described in SW-846, 3rd edition -Final Update II. Additional interpretations specific to other aspects of methods performed, such as instrument calibration and bench procedures, are described in program-specific documents (e.g. US Corps of Engineers, AFCEE, etc.) and associated method standard operating procedures. Where explicit program requirements or project requirements exist, certain elements of the Quanterra QC Program may be superseded by these requirements.

#### Elements of the Quanterra QC Program

Where other clear regulatory guidance, contract specifications, or client requirements are not available, the Quanterra QC Program provides guidance for Batch QC requirements. The Quality Control Batch is a set of up to 20 field samples of similar matrix, which are processed together under the same conditions, within the same time frame. Included in each Quality Control Batch is a Method Blank, Laboratory Control Sample, and Matrix Spike Duplicate. For methods that require independent sample preparation prior to analysis, the QC Batch is defined at the preparation stage. For methods that do not require independent sample preparation, the QC Batch is defined at the instrument. The QC Batch Number is provided on each result page in association with the parameter(s) presented, and may be used to cross-reference sample results with the associated QC data.

#### Method Blank Evaluations

Laboratory analytical method blanks are systematically prepared and analyzed in order to continuously evaluate the system interference and background contamination levels associated with each applicable analytical method. Method blanks include all aspects of actual laboratory procedures involving sample preparation and analysis, substituting analyte-free water or solid for the actual sample. Under normal circumstances, the Method Blank should not exhibit analytes of interest above the reported detection limit. Due to the presence of some analytes in a typical laboratory setting, the following common laboratory contaminants are exceptions to this rule, provided they are not present in the method blank at greater than five times the reporting limit.

 <u>Volatiles</u>	Semi-Volatiles	Metals
Methylene chloride	Dimethyl phthalate	Calcium
Toluene	Diethyl phthalate	Magnesium
2-Butanone	Di-n-butyl-phthalate	Sodium
Acetone	Butyl benzyl phthalate	
	Bis (2-ethylhexyl) phthalate	

A method blank is performed with each analytical batch. A minimum of 5% of all laboratory analyses are method blanks.

#### Laboratory Control Sample (LCS) Evaluations

Known concentrations of designated matrix spike (target analyte) compounds are added to a method blank prior to extraction and analysis. Percent recovery determinations of individual target analytes in the LCS demonstrate the laboratory's method performance for the QC Batch relative to these target analytes (or other individual components represented by a subset of control analytes). Percent recovery data is displayed alongside acceptance criteria, that is typically derived from laboratory historical data. Failure of a Laboratory Control Sample to meet established recovery criteria for control analytes is cause for corrective actions to occur, which typically includes re-extraction and re-analysis of all samples associated with the QC Batch. An LCS is performed with each analytical batch. A minimum of 5% of all laboratory analyses are laboratory control samples.



## Quanterra Quality Control Program Summary (continued)

#### Surrogate Spike Recovery Evaluations

For GC and GC/MS analyses, known concentrations of designated surrogate spikes, consisting of a number of similar, non-method compounds or method compound analogues, are added to sample fractions prior to sample extraction and analysis. The percent recovery determinations calculated from the subsequent analysis is one indication of the overall method efficiency for the individual sample. The surrogate spike recovery data is displayed alongside acceptance limits at the bottom of each applicable analytical result report page. Where sufficient laboratory-generated data does not yet exist to determine appropriate control limits, advisory limits may be enacted until sufficient data is collected to allow implementation of control limits.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD) Evaluations

In conjunction with the analysis of a client-provided field sample, a known concentration of designated matrix spike compounds (target analytes) are added to two aliquots of the actual sample. Percent recovery determinations are calculated from both spiked aliquots, using target analyte concentrations already present in the actual sample as a baseline. The percent recovery determinations indicate the accuracy of the method specific to the target analytes (or other individual components represented by a subset of control analytes) in the individual sample matrix. Comparison of the percent recoveries in the two spiked aliquots yields a relative percent difference (RPD). Percent recovery and relative percent difference data is displayed alongside historical criteria, that may be used to judge individual sample matrix effects for specific analytes. MS/MSD data is evaluated by the laboratory with respect to the individual sample matrix. In cases where MS/MSD data indicate sample method performance outside of historical criteria, the laboratory control sample results are referenced to ensure acceptable method performance by the laboratory for the sample batch. For analyses which are inappropriately suited for matrix spikes (e.g. pH), non-spiked duplicate analyses are performed to generate precision data. Matrix spike duplicates are typically performed on at least one sample within each analytical batch. A minimum of 10% of all laboratory analyses are matrix spikes or duplicates.

#### Corrective Action Evaluations

The goal of the Quanterra Quality Control Program is to generate data that demonstrates process control, and allows for client usability of data. Where the analytical process is demonstrated to vary from established criteria, or client requirements have not been met, data evaluation resulting in corrective action may be required. Corrective action may include re-preparation and/or reanalysis of field samples and QC samples. Where appropriate or necessary to allow proper interpretation of results presented in the final report, details of corrective actions taken during the laboratory processing of samples are presented as a case narrative at the front of the report. Alternatively, routine corrective action, such as reanalysis, may be footnoted on individual sample result pages.

#### **Analytical Result Qualifier Flags**

Where applicable, data qualifiers may be appended to analytical results in order to allow for proper interpretation of the result presented. Typically, the presence of data qualifier flag on an analytical result page is accompanied by a footnote explaining the qualifier.



#### GC Volatiles

**Client Lot #...:** B7K250141

Work Order #...: CEA4R101

Matrix....: SOLID

MB Lot-Sample #: B7L010000-125

Prep Date....: 11/30/97

Final Wgt/Vol..: 5 mL

Analysis Date..: 12/01/97 Dilution Factor: 1

Prep Batch #...: 7335125 Initial Wgt/Vol: 100 uL

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Methyl tert-butyl ether	ND	0.25	mg/kg	SW846 8020A
Benzene	ND	0.25	mg/kg	SW846 8020A
Ethylbenzene	ND	0.25	mg/kg	SW846 8020A
Toluene	ND	0.25	mg/kg	SW846 8020A
Chlorobenzene	ND	0.25	mg/kg	SW846 8020A
1,2-Dichlorobenzene	ND	0.25	mg/kg	SW846 8020A
1,3-Dichlorobenzene	ND	0.25	mg/kg	SW846 8020A
1,4-Dichlorobenzene	ND	0.25	mg/kg	SW846 8020A
Xylenes (total)	ND	0.25	mg/kg	SW846 8020A
	PERCENT	RECOVERY	•	
SURROGATE	RECOVERY	LIMİTS		
4-Bromofluorobenzene	106	(70 - 13	0)	

#### NOTE(S):



#### GC Volatiles

Client Lot #...: B7K250141

Work Order #...: CEC1L101

Matrix....: SOLID

MB Lot-Sample #: B7L020000-257

Prep Date....: 12/02/97

Final Wgt/Vol..: 5 mL

Analysis Date..: 12/02/97

Prep Batch #...: 7336257

Dilution Factor: 1

Initial Wgt/Vol: 2.5 g

REP	ORT	ING
-----	-----	-----

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Methyl tert-butyl ether	ND	2.0	ug/kg	SW846 8020A
Benzene	ND	2.0	ug/kg	SW846 8020A
Ethylbenzene	ND	2.0	ug/kg	SW846 8020A
Toluene	ND	2.0	ug/kg	SW846 8020A
Chlorobenzene	ND	2.0	ug/kg	SW846 8020A
1,2-Dichlorobenzene	ND	2.0	ug/kg	SW846 8020A
1,3-Dichlorobenzene	ND	2.0	ug/kg	SW846 8020A
1,4-Dichlorobenzene	ND	2.0	ug/kg	SW846 8020A
Xylenes (total)	ND	2.0	ug/kg	SW846 8020A
	PERCENT	RECOVERY		•
SURROGATE	RECOVERY	LIMITS		
4-Bromofluorobenzene	81	(70 - 130	)	



#### GC Volatiles

**Client Lot #...:** B7K250141

MB Lot-Sample #: B7L030000-270

Work Order #...: CECNN101

Matrix..... WATER

Prep Date....: 12/01/97

Final Wgt/Vol..: 5 mL

Analysis Date..: 12/01/97 Dilution Factor: 1

Prep Batch #...: 7337270

Initial Wgt/Vol: 5 mL

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Methyl tert-butyl ether	ND	1.0	ug/L	SW846 8020A
Benzene	ND	1.0	ug/L	SW846 8020A
Ethylbenzene	ND	1.0	ug/L	SW846 8020A
Toluene	ND	1.0	ug/L	SW846 8020A
Chlorobenzene	ND	1.0	ug/L	SW846 8020A
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8020A
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8020A
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8020A
Xylenes (total)	ND	1.0	ug/L	SW846 8020A
SURROGATE 4-Bromofluorobenzene	PERCENT RECOVERY 104	RECOVERY LIMITS (70 - 130	<del>.</del>	

NOTE(S):



#### GC Semivolatiles

Work Order #...: CE96H101

Client Lot #...: B7K250141

Analysis Date..: 12/01/97

MB Lot-Sample #: B7K260000-223

Prep Date....: 11/26/97

Prep Batch #...: 7330223 Initial Wgt/Vol: 30 g

Matrix....: SOLID

Final Wgt/Vol..: 2 mL

PARAMETER

TPH (C8-C40)

Dilution Factor: 1

RESULT ND

PERCENT

LIMIT 10

REPORTING

METHOD mg/kg

FL-DEP FL-PRO

SURROGATE o-Terphenyl

RECOVERY 85 41

LIMITS (22 - 166)

RECOVERY

(10 - 192)

NOTE(S):

Nonatriacontane



#### GC Semivolatiles

Client Lot #...: B7K250141

Work Order #...: CE8XA101

Matrix....: WATER

MB Lot-Sample #: B7K260000-178

Prep Date....: 11/26/97

Analysis Date..: 12/01/97

Prep Batch #...: 7330178

Final Wgt/Vol..: 2 mL

Dilution Factor: 1

Initial Wgt/Vol: 1000 mL

REPORTING

PARAMETER

RESULT

LIMIT

UNITS METHOD

TPH (C8-C40)

0.50

mg/L

FL-DEP FL-PRO

SURROGATE o-Terphenyl Nonatriacontane PERCENT RECOVERY 99 39

LIMITS (33 - 162)(10 - 109)

RECOVERY

NOTE(S):



#### HPLC

**Client Lot #...:** B7K250141

Work Order #...: CEAR5101

Matrix....: SOLID

MB Lot-Sample #: B7L020000-192

Prep Date....: 12/02/97

Final Wgt/Vol..: 1 mL

Analysis Date..: 12/05/97

Prep Batch #...: 7336192

Dilution Factor: 1

Initial Wgt/Vol: 30 g

REPORTING	

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acenaphthene	ND	50	ug/kg	SW846 8310
Acenaphthylene	ND	50	ug/kg	SW846 8310
Anthracene	ND	50	ug/kg	SW846 8310
Benzo(a) anthracene	ND	5.0	ug/kg	SW846 8310
Benzo(a)pyrene	ND	5.0	ug/kg	SW846 8310
Benzo(b) fluoranthene	ND	5.0	ug/kg	SW846 8310
Benzo(ghi)perylene	ND	5.0	ug/kg	SW846 8310
Benzo(k) fluoranthene	ND	5.0	ug/kg	SW846 8310
Chrysene	ND	5.0	ug/kg	SW846 8310
Dibenz(a,h)anthracene	ND	5.0	ug/kg	SW846 8310
Fluoranthene	ND	5.0	ug/kg	SW846 8310
Fluorene	ND	50	ug/k <b>g</b>	SW846 8310
Indeno(1,2,3-cd)pyrene	ND	5.0	ug/kg	SW846 8310
Methylnaphthalene	ND	50	ug/kg	SW846 8310
-Methylnaphthalene	ND	50	ug/kg	SW846 8310
Naphthalene	ND	50	ug/kg	SW846 8310
Phenanthrene	ND	50	ug/kg	SW846 8310
Pyrene	ND	5.0	ug/kg	SW846 8310
	PERCENT	RECOVERY	?	
SURROGATE	RECOVERY	LIMITS		
Carbazole	80	(30 - 13	30)	

NOTE(S):



#### HPLC

**Client Lot #...:** B7K250141

MB Lot-Sample #: B7K260000-158

Work Order #...: CE8W5101

Matrix..... WATER

Prep Date....: 11/26/97

Final Wgt/Vol..: 1 mL

Analysis Date..: 12/01/97 Dilution Factor: 1

Prep Batch #...: 7330158

Initial Wgt/Vol: 1000 mL

#### REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acenaphthene	ND	1.0	ug/L	SW846 8310
Acenaphthylene	ND	1.0	ug/L	SW846 8310
Anthracene	ND	1.0	ug/L	SW846 8310
Benzo(a)anthracene	ND	0.092	ug/L	SW846 8310
Benzo(a)pyrene	ND	0.10	ug/L	SW846 8310
Benzo(b) fluoranthene	ND	0.092	ug/L	
Benzo(ghi)perylene	ND	0.20	ug/L	SW846 8310
Benzo(k) fluoranthene	ND	0.15	ug/L	SW846 8310
Chrysene	ND	0.10	ug/L	SW846 8310
Dibenz(a,h)anthracene	ND	0.20	ug/L	SW846 8310
Fluoranthene	ND	0.20	ug/L ug/L	SW846 8310
Fluorene	ND	2.0	-	SW846 8310
Indeno(1,2,3-cd)pyrene	ND	0.092	ug/L	SW846 8310
1-Methylnaphthalene	ND	1.0	ug/L	SW846 8310
2-Methylnaphthalene	ND	1.0	ug/L	SW846 8310
Naphthalene	ND	1.0	ug/L	SW846 8310
Phenanthrene	ND		ug/L	SW846 8310
Pyrene	ND	1.0	ug/L	SW846 8310
17.5	MD	0.20	ug/L	SW846 8310
	PERCENT	BECOVERY		
SURROGATE		RECOVERY		
Carbazole	RECOVERY 66	LIMITS		
	00	(30 - 13	U)	

NOTE(S):



#### GC Volatiles

Client Lot #...: B7K250141 Work Order #...: CEA4R102-LCS Matrix.....: SOLID

LCS Lot-Sample#: B7L010000-125 CEA4R103-LCSD

Prep Batch #...: 7335125

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 100 uL

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS		RPD LIMITS	METHOD
Benzene	94	(61 - 141)			SW846 8020A
	106	(61 - 141)	12	(0-20)	SW846 8020A
Toluene	90	(61 - 136)			SW846 8020A
	102	(61 - 136)	12	(0-20)	SW846 8020A
		PERCENT	RECOVE	RY	
SURROGATE		RECOVERY	LIMITS		
4-Bromofluorobenzene		99	(70 -	130)	
		103	(70 -	130)	

#### NOTE(S):

^{&#}x27;old print denotes control parameters



GC Volatiles

Client Lot #...: B7K250141

Work Order #...: CEC1L102

Matrix....: SOLID

LCS Lot-Sample#: B7L020000-257

**Prep Date....:** 12/02/97

Analysis Date..: 12/02/97

Prep Batch #...: 7336257

Dilution Factor: 1

Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 2.5 g

PERCENT

RECOVERY

PARAMETER Benzene

RECOVERY

LIMITS

METHOD

118 109 (61 - 141)

SW846 8020A

(61 - 136)

SW846 8020A

PERCENT

RECOVERY

RECOVERY LIMITS

82

(70 - 130)

NOTE(S):

SURROGATE

Toluene

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

4-Bromofluorobenzene



#### GC Volatiles

Client Lot #...: B7K250141 Work Order #...: CECNN102-LCS Matrix..... WATER

LCS Lot-Sample#: B7L030000-270 CECNN103-LCSD

**Prep Date....:** 12/01/97 **Analysis Date..:** 12/01/97

Prep Batch #...: 7337270

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOD
Benzene	88	(49 - 149)			SW846 8020A
	96	(49 - 149)	9.5	(0-20)	SW846 8020A
Chlorobenzene	94	(55 - 135)			SW846 8020A
	99	(55 - 135)	4.7	(0-20)	SW846 8020A
Toluene	93	(65 - 130)			SW846 8020A
	98	(65 - 130)	5.7	(0-20)	SW846 8020A
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	<u>s</u>	
4-Bromofluorobenzene		104	(70 -	130)	
		100	(70 -	130)	

#### VOTE(S):

Bold print denotes control parameters

Calculations are performed before rounding to avoid round-off errors in calculated results.



## GC Semivolatiles

Client Lot #...: B7K250141

Work Order #...: CE96H102

Matrix..... SOLID

LCS Lot-Sample#: B7K260000-223

**Prep Date....:** 11/26/97

Analysis Date..: 12/01/97

Prep Batch #...: 7330223

Dilution Factor: 1

Final Wgt/Vol..: 2 mL

Initial Wgt/Vol: 30 g

PERCENT

RECOVERY

PARAMETER

RECOVERY

LIMITS

METHOD

TPH (C8-C40) 93

(52 - 112)

FL-DEP FL-PRO

SURROGATE
o-Terphenyl
Nonatriacontane

PERCENT RECOVERY 90

46

RECOVERY LIMITS (22 - 166)

(10 - 192)

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters



#### GC Semivolatiles

Client Lot #...: B7K250141 Work Order #...: CE8XA102-LCS Matrix...... WATER

LCS Lot-Sample#: B7K260000-178 CE8XA103-LCSD

**Prep Date....:** 11/26/97 **Analysis Date..:** 12/01/97

Prep Batch #...: 7330178

Dilution Factor: 1 Final Wgt/Vol..: 2 mL

Initial Wgt/Vol: 1000 mL

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD RPD LIMITS	METHOD
TPH (C8-C40)	91	(60 - 115)		FL-DEP FL-PRO
	95	(60 - 115)	4.3 (0-20)	FL-DEP FL-PRO
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
o-Terphenyl	<del></del>	95	(33 - 162)	
		97	(33 - 162)	
Nonatriacontane		37	(10 - 109)	
		59	(10 - 109)	
			(20 100)	

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

^{&#}x27;old print denotes control parameters



#### HPLC

Client Lot #...: B7K250141

Work Order #...: CEAR5102

Matrix....: SOLID

LCS Lot-Sample#: B7L020000-192

Prep Date....: 12/02/97

/02/97 **Analysis Date..:** 12/05/97

Prep Batch #...: 7336192
Dilution Factor: 1

Initial Wgt/Vol: 30 g

Final Wgt/Vol..: 1 mL

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Acenaphthene	89	(43 - 115)	SW846 8310
Chrysene	85	(48 - 115)	SW846 8310
Fluorene	88	(44 - 115)	SW846 8310
1-Methylnaphthalene	79	(43 - 115)	SW846 8310
Naphthalene	83	(36 - 115)	SW846 8310
Pyrene	77	(48 - 115)	SW846 8310
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
~ ;			

NOTE(S):

Carbazole

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters



#### HPLC

Client Lot #...: B7K250141 Work Order #...: CE8W5102 Matrix....: WATER

LCS Lot-Sample#: B7K260000-158

**Prep Date....:** 11/26/97 Analysis Date..: 12/01/97

Prep Batch #...: 7330158

Dilution Factor: 1 Final Wgt/Vol..: 1 mL

Initial Wgt/Vol: 1000 mL

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD
Naphthalene	80	(9.0- 115)	SW846 8310
1-Methylnaphthalene	89	(28 - 115)	SW846 8310
Acenaphthene	92	(31 - 115)	SW846 8310
Fluorene	91	(23 - 115)	SW846 8310
Pyrene	85	(49 - 115)	SW846 8310
Chrysene	74	(55 - 115)	SW846 8310
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Carbazole		83	(30 - 130)

#### NOTE(S):

siculations are performed before rounding to avoid round-off errors in calculated results.

old print denotes control parameters



## MATRIX SPIKE SAMPLE EVALUATION REPORT

#### GC Volatiles

**Client Lot #...:** B7K250141

Work Order #...: CE8GE105-MS

Matrix....: SOLID

MS Lot-Sample #: B7K250141-004

CE8GE106-MSD

**Date Sampled...:** 11/19/97

Date Received..: 11/25/97

**Prep Date....:** 12/03/97

Prep Batch #...: 7336257

Analysis Date..: 12/03/97

Dilution Factor: 1

Initial Wgt/Vol: 2.5 g

Final Wgt/Vol..: 5 mL

* Moisture....: 13

PARAMETER Benzene Toluene	PERCENT RECOVERY 111 117 103	RECOVERY LIMITS (39 - 150) (39 - 150) (46 - 148)	RPD 5.6	RPD LIMITS (0-25)	IMITS METHOD SW846 8020A	8020A 8020A
	110	(46 - 148)	6.8	(0-25)		8020A
SURROGATE 4-Bromofluorobenzene		PERCENT RECOVERY 83		RECOVERY <u>LIMITS</u> (70 - 130 (70 - 130)	•	

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters



#### MATRIX SPIKE SAMPLE EVALUATION REPORT

#### GC Semivolatiles

Client Lot #...: B7K250141 Work Order #...: CE8FW105-MS Matrix.....: SOLID

MS Lot-Sample #: B7K250141-001 CE8FW106-MSD

Prep Date....: 11/26/97 Analysis Date.:: 12/01/97

Prep Batch #...: 7330223

Dilution Factor: 1 Initial Wgt/Vol: 30 g Final Wgt/Vol.: 2 mL

**% Moisture....:** 14

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOD	
TPH (C8-C40)	NC,MSB NC,MSB	(41 - 224) (41 - 224)		(0-25)		FL-PRO FL-PRO
SURROGATE		PERCENT RECOVERY		RECOVERY LIMITS		
o-Terphenyl		92 92		(22 - 166) (22 - 166)		
Nonatriacontane		64 53		(10 - 192) (10 - 192)	)	

#### NOTE (S):

MSB The recovery and RPD were not calculated because the sample amount was greater than four times the spike amount.

rulations are performed before rounding to avoid round-off errors in calculated results.

a print denotes control parameters

NC The recovery and RPD were not calculated.



## MATRIX SPIKE SAMPLE EVALUATION REPORT

#### HPLC

Client Lot #...: B7K250141

Work Order #...: CE8G5105-MS

MS Lot-Sample #: B7K250141-002

CE8G5106-MSD

**Date Sampled...:** 11/19/97

Date Received..: 11/25/97

Matrix....: SOLID

Prep Date....: 12/02/97

Analysis Date..: 12/05/97

**Prep Batch #...:** 7336192

Initial Wgt/Vol: 30 g

Final Wgt/Vol..: 1 mL

Dilution Factor: 1 *** Moisture....:** 14

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOD
Acenaphthene	69	(10 - 124)			SW846 8310
	63	(10 - 124)	9.3	(0-30)	SW846 8310
Chrysene	75	(10 - 199)		(10 00)	SW846 8310
	72	(10 - 199)	5.0	(0-30)	SW846 8310
Fluorene	95	(10 - 142)		, ,	SW846 8310
	9 <b>9</b>	(10 - 142)	3.5	(0-30)	SW846 8310
1-Methylnaphthalene	171 a	(30 - 130)			SW846 8310
	502 a,p	(30 - 130)	92	(0-30)	SW846 8310
Naphthalene	112	(10 - 122)			SW846 8310
	187 a,p	(10 - 122)	. 48	(0-30)	SW846 8310
Pyrene	349 a	(10 - 140)		•	SW846 8310
	720 a,p	(10 - 140)	69	(0-30)	SW846 8310
		PERCENT		RECOVERY	
SURROGATE	_	RECOVERY		LIMITS	
Carbazole		85		(30 - 130	<u> </u>
		72		(30 - 130)	

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

- a Spiked analyte recovery is outside stated control limits.
- p Relative percent difference (RPD) is outside stated control limits.



# TAMPA LABORATORY CONDITION UPON RECEIPT FORM

Client: Drown & Koot  Date Received: 1135397  Received By: (McVM)	Project Name: NAShake Lot Number: B718 CUR Completed By:	ting (250)	70 141	eld_
Cooler/Shipping Information:	ı			7
Type: Cooler Box Other/				
Cooler ID/Track #			$\top$	
Temp (Celsius) 4 9				<del></del>
Cooler ID/Track #			T	
Temp (Celsius)				
Any "NO" responses or discrepancies should be ex				
l. Were custody seals on shipping container(s) in		YES	NO	NA NA
			İ	<u> </u>
Were custody papers properly included with sales.	D UNABLE TO SAVE CUSTODY SEAL		<u> </u>	
3. Were custody papers properly filled out (ink, si	and match labels 2	<del>                                      </del>	<u> </u>	<del> </del>
Did all bottles arrive in good condition (unbrok	gned, match labels):	<del>  X</del>	<del> </del>	<del> </del>
5. Were all bottle labels complete (sample #, date.		<del>  X</del>	├	<del> </del>
6. Were correct bottles used for the tests indicated	n signed, analysis, preservatives):	+x		
Were proper sample preservation techniques inc		1 ×	<del> </del>	
8. Were samples received within holding times? If		<del>                                     </del>		
9. Were all VOA bottles checked for the presence	+~-			
If air bubbles were found, indicate in comment	//	1		
10. Were samples in direct contact with wet ice? It		+		
11. Were the samples received with a temperature	blank? RECORD TEMPERATURE AROVE	$+ \times -$		
If "No," check one:	Clair. RECORD TENT ERATURE ABOVE			
UNABLE TO DETERMINE TEMP ☐ TEMP TAK	EN FROM ICE/WATER NEAR SAMPLES			
12. Were sample pHs checked and recorded by S.R	(see back for Page 2 - Sample pH)?	<del>                                     </del>		Not inspected
NOTE: TOC and VOA samples are checked by labor	pratory analysts. If response is "Not Inspected"			- Page 2 not
then a pH check is not required/performed by Samp	le Receiving and Page 2 is not applicable.	V		_
13. Were samples accepted into the laboratory?		1		completed 🗌
Comments:				7
Ip they are for ms/m	or time-	Say	wi	rich
Complete if applicable: NCM#:	Check one: Notified PM by E-ma	il 🗌 Ha	ırd Cop	у <u> </u>
Project Manager initials/date reviewed:	12/2/97			
Tective Action: 8310 MS/MSD per 5020 A MS/MSD on 5809	formed on 5805-6506; FC-PRO	Mofmss	i one s	5A:5-0506D
Corrective Action completed by/date:				

June 5, 1998

Ms. Nancy Robertson Quanterra Incorporated 5910 Breckenridge Parkway, Suite H Tampa, Florida 33610

Subject:

B7K250141

Dear Ms. Robertson:

Pursuant to our earlier conversation, please make the changes outlined below to the laboratory report for the referenced lot number. A copy of the chain of custody for these samples is attached for your reference.

Original Sample ID	Revised Sample ID
DSP-SS-SB01-0708	PDF-SS-SB01-0708
DSP-SS-SB06-1819	PDF-SS-SB06-1819
DSP-SS-SB06-1011	PDF-SS-SB06-1011
HSE-SS-SB01-0405B	PPS-SS-SB01-0405B
HSE-SS-SB01-0405	PPS-SS-SB01-0405
HSE-SS-SB01-1011	PPS-SS-SB01-1011
HSE-SS-SB02-1011	PPS-SS-SB02-1011

Your assistance in this matter is greatly appreciated. If you have any questions please contact me at (850) 656-5458.

Sincerely,

TETRA TECH NUS, INC.

Paul E. Calligan, P.G.

Task Order Manager

/pc

**Enclosures** 



# Brown & Root Environmental

455 FAIRWAY DRIVE, SUITE 200 DEERFIELD BEACH, FLORIDA 33441 (305) 570-5885 (305) 570-5974 (FAX)

SITE MANAGER:	<u> </u>	Calligan
PROJECT NAME:		Whiting Field

BRE PROJECT NO.: 7648 _ CODE: ___

P.O. NO.: **P97454** 

SHIPPED TO:

PAGE LOF 2

Quanterra, (LABORATORY NAME, CITY)

CHAIN OF	F CUS	<b>TODY</b>	RECORD												IAL	_YSK	<u></u>					<del></del>
SAMPLED BY	(PRINT	): E:	JASON	J. MElany g. Melann	_	SAMF	PΕ	MATRIX	PRES. TYPE	Town .		33/	13/x	#c1	7	7	7	\$ \$ C				☐ RUSH R. ☐ 7 DAYS
LAB NO.	DATE	TIME	SAMP	PLE IDENTIFICATION		COMP.	GRAB	MA	SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SAN TO SA	82127	F1M.	8210	802,	<u> </u>	$/_{\perp}$	//	NUMBE	RES	SULTS D	DUE DAT	TE:	
	<del></del>	[600		55-5805-050			χ	7	1					$\mathbf{I}$			2		Sar	mples	<del></del>	
	11/19/97	<del> </del>	-0W5-	-55-5B • 5 - 0 5 t	000		X		1 1	1					T		2			<del>`\\</del>		
	11/19/97	<del> </del>		55-5801-11	12		X		1	1					$\top$		2					
	11/19/97	1650	ows -	- 55-5009-05	ن مله		X	5	1 1								2					
	11/19/97			/MS0			X	5	1	T	$\prod$		,		1	1	2	<del> </del>	xha	Soil	Volume	<u>e</u>
	11/20/97		Osp	0-55 - 5B01- 0	708		X	5	11			1			$\top$	1	2			<u> </u>		
ľ	11/20/47	1630		- 55 - 5B ob - 18			Х	5	1 1	1			$\Box$	.	$\top$	1	2					
	<del> </del>	1045	Dsp	1-55-5B06-1			X		1 1	1		$\Box$		, —	+	+	12					
	4/22/97	1	JNC	C-51-5B01-10			X		1	T				.	十		12	<del> </del>				
	W22/97	1705		c-55-5B02-			X		1	17					十	+	2					
	11/22/97	1725		C-55-5B04-			X		15	1		1	,		+	+	2					
	1/23/97	1250	· · · · · · · · · · · · · · · · · · ·	-55-5B01-040			X	1	1	'	2	2	3		+	+	17	<del> </del>				
				TOTAL NUMBE		CON		ــــــــــــــــــــــــــــــــــــــ	3 11	11	╅━╌╁	2	3	_	$\top$	+	+					
EMPTY BOTTLES R	ELINQUISH	ED BY (SI	GNATURE)		DATE:				PTY BOT	1 1	1 1	IVED	BY (	SIGNA.	TURE)	<del>,_</del>	4	SEAL (ES)	AL INTAC	CT?	DATE: 11	
RELINQUISHED BY	(SIGNATIVE	RE ME	Com	SEAL INTACT?  SES NO N/A	DATE: 14/	124/9		RECI	CEIVED	BY (S	(SIGNAT	TURE)	1/2	ul	ty	·	1	SEAL YES	AL INTAC NO	CT? N/A	DATE: ///	1000
RELINQUISHED BY	(SIGNA IUI	RE)		SEAL INTACT? YES NO N/A	DATE:	•		RECI	CEIVED	BY (S	SIGNAT	TURE)	1		7				AL INTAC	1	DATE:	
SPECIAL I	NSTRU	CTIONS	S:		IAME.		T		ORAT	TOF	₹Y F	₹EM.	ARŁ	(S:				IES	NO	N/A	TIME:	·
SAMPLE CONTAINE	EPS PRECLI	EANED BY: ATORY	□MANUFACT	TURER METHOD OF	OF SHIPM	ENT: ,		Fed-	- <del>e</del> x					T _{B1}		OF L/	ADINC	NO.: _				
WHITE-FULLY EXEC YELLOW-RECEIVING PINK-SAMPLERS' (	CUTED COP	PY TORY COPY	SAMPLING TE								FOR L		RATOR								lo. 009	<del></del>
GOLDENROD-SITE I	•							'	DATE:	<u>: _</u>					ПΜ	AE:				_		

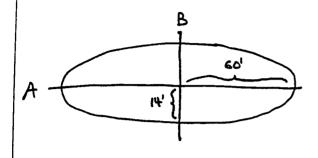


# Brown & Root **Environmental**

455 FAIRWAY DRIVE, SUITE 200 DEERFIELD BEACH, FLORIDA 33441 (305) 570-5885 (305) 570-5974 (FAX)

SITE MANAGER: Paul Culligan	SHIPPED TO:
PROJECT NAME: (NAS) Whiting Held	SHIPPED 10:
BRE PROJECT NO.: 7648 CODE:	<b>0</b>
P.O. NO.: P97454	— Uu

	¥
Quanterra	Tampla
(LABORATOR	Y NAME CLTY)


PAGE 2 OF 2

(305)	570-588	,5 (305)	570-5974 (1	,FAX)	P.O. N/	10.:	<u></u>	<u> </u>	454	4					_ /	1			(LABORATORY	NAME	, CITY)	
CHAIN O	F CUS	TODY	RECORD											DRY	AN	ALY	/SIS	3				
SAMPLED BY			JASON Junn	1. ME	Elmn		TYF	—	TRIX.	PRES	s. 3	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7	7	7	7	<del></del>	//	/දුණු/ □24 HR.[	□48 HF	IR. <b>□72</b> HR.	☐ RUSH R. ☐ 7 DAYS
LAB NO.	DATE				NTIFICATION		COMP.	L_/		PARAMET	E 2000	27/0/6/			//	//		NUMBE	RESULTS DU		MENTS:	
		1320	<del> </del>		5B01-			V	4	1   '	'   '			$\Box$	I	I		2	<del></del>		iced	
		1335	<del> </del>		5801-			V	5	][	1 1							2	——————————————————————————————————————		<del></del>	
ļ ————	11/23/97	1350	115e	- 55 -	5B02-	1011	/	1	5		1							2		•••		
			<del></del>	<del></del>				<u>                                     </u>												,		
	<del>                                     </del>	-	<del></del>					<u> </u> '	'													
	<u> </u>		r				$\perp$	<u>                                     </u>		]	'											
			r				$\perp \! \! \perp \! \! \perp$	<u> </u>	<u></u> '	] L	'											
		<del></del>	<del></del>				$\perp$	<u>'</u>	<u> </u>		<u> </u>		4				<u> </u>					
		<del></del>		<del></del>				<u> </u>	<b>_</b> '	]	'	$\sqcup$	$\Box$	_			'					
<u> </u>							1	4	<b></b> '	1  -	<u> </u> '	$\perp$	1				'					
		<del></del>	ı <del></del>			<del></del>	4		<b> </b>	1	<u> </u> '		4	_			'					
	<u></u>								<u></u> '	Щ.	'	44	4	_	_		'					
EMPTY BOTTLES F	aci tricillo	150 BV (SI	**** Tipe\		TAL NUMB		CONT	ΙΑΙ										9				
RELINQUISHED BY  RELINQUISHED BY	Y (SIGNATUR	IRE) M & Co		YES SEAL	NO N/A INTACT? NO N/A NO N/A LINTACT?	DATE: /(	1/24/9 12]0		REC (4)	APTY BO CEIVED CEIVED	(). BY (S	SIGNAT ALL	WI //, ITURE)	Mc Y	16 C	sun	1		SEAL INTACTOR NO NO SEAL INTACTOR YES NO NO NO NO NO NO NO NO NO NO NO NO NO	N/A 1  77 [  N/A 1	TIME: 18  DATE: // / 24  TIME: / (	]17197 860 15197 000
<u>(5)</u>			·		NO N/A				<b>-</b> 6		טון פ	HON.	URE			•			SEAL INTACT? YES NO N		DATE:	
SPECIAL I								I	LAB	BORA	TOR	YR	EMA	ARK!	S:					<u> </u>	IME:	
SAMPLE CONTAIN	RS PRECLE	EANED BY: ATORY [	MANUFACTI	IURER	METHOD (	OF SHIPME	ENT:		L6	3-6)	<u>X_</u>				BII	ı OF		טומפ	NO.:			
WHITE-FULLY EXEC YELLOW-RECET ''' PINK-SAMPL GOLDENROD-SI	'^ LABORATO	TORY COPY	SAMPLING TE	EAM:				<i>*</i>			(SIGNA	FOR L	LABORA ):	ATORY	·	TIME:			NO	N	າ09:	33

# APPENDIX I

SOIL VOLUME AND CONTAMINANT MASS CALCULATIONS

CLIENT South Div	JOB NUMBER 7648
Soil volume calc	oil/water separator
BASED ON Soil Plume Maps	DRAWING NUMBER
BY P. Colligan CHECKED BY	APPROVED BY DATE 6/1/98



$$Area = \gamma r(rA)(rB)$$

$$= \gamma r(60')(14')$$

$$= 2,639 A^{2}$$

Avg TPH Concentration

<u>SB#</u>

OWS - SB05 - 0506

OWS - SB01 - 1112

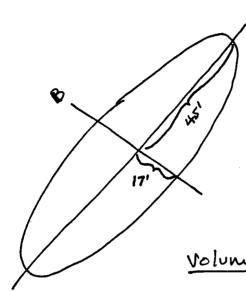
OWS - SB09 - 0506

540 mg/kg

OWS - SB09 - 0506

5.7 mg/kg

Avg concent = 1,449 mg/kg


Date

## APPENDIX I

# **ESTIMATED MASS OF CONTAMINANTS IN VADOSE ZONE SOIL MATRIX**

SITE INFORMATI		Committee and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con
Site: Location:	OIL/WATER SEPARATOR	
Client:	NAS WHITING FILED, MILTON, FLORIDA SOUTHDIV	
Gilont.		
ASSUMPTIONS:		
INPUT:		
Estimated la	mpacted Area	sq ft 2,639
Estimated A	verage Impacted Thickness	ft 16
	mpacted Volume	cu ft 42,224
Average To	tal VOA Concentration	mg/kg 1,449
CALCULATIONS:		
CALCULATIONS:		•
Estimated n	nass of hydrocarbons in soil	
	1 vd ³ 1.4 tons kg mg	, ka lh
42,224 ft ³ x	$\frac{1 \text{ yd}^3}{27 \text{ ft}^3} \times \frac{1.4 \text{ tons}}{1 \text{ yd}^3} \times 1016 \frac{\text{kg}}{\text{ton}} \times 1,449 \frac{\text{mg}}{\text{kg}} \text{ TR}$	PH x $(1.0 \times 10^{-6}) \frac{\text{kg}}{\text{mg}} \times 2.204623 \frac{\text{kg}}{\text{kg}}$
		lbs 7106
PREPARED BY:	,	CHECKED BY:

CLIENT south Div JOB NUMBER 7648 SUBJECT soil volume & Avg TPH concentration Calc. - Dispensing Facility soil Plume Maps DRAWING NUMBER P. Calliga CHECKED BY APPROVED BY DATE 6/1/98



$$\frac{Area}{} = 7r (rA)(rB)$$
$$= 7r (45)(17)$$

$$= 1,424 \text{ yd}^3$$

# Average TPH Concentration

**SB #** 

TPH concentration

PBF-5B01-0708

ND

PDF - SB06 - 1011

20 mg/kg

PDF - SB06 - 1819

ND

Average TPH concert. = 20 mg/kg.

## APPENDIX I

# ESTIMATED MASS OF CONTAMINANTS IN VADOSE ZONE SOIL MATRIX

SITE INFORMAT	ION:		
Site:	PRODUCT LINE DISPENSING FACILITY		
Location:	NAS WHITING FILED, MILTON, FLORIDA		
Client:	SOUTHDIN		
ASSUMPTIONS:			
Estimated I	mpacted Area	sq ft	2,403
Estimated A	verage Impacted Thickness	ft	16
Estimated I	npacted Volume	cu ft	38,448
	tal VOA Concentration	mg/kg	20


#### **CALCULATIONS:**

Estimated mass of hydrocarbons in soil

38,448 ft³ x 
$$\frac{1 \text{ yd}^3}{27 \text{ ft}^3}$$
 x  $\frac{1.4 \text{ tons}}{1 \text{ yd}^3}$  x 1016  $\frac{\text{kg}}{\text{ton}}$  x 20  $\frac{\text{mg}}{\text{kg}}$  TRPH x  $\left(1.0 \times 10^{-6}\right)$   $\frac{\text{kg}}{\text{mg}}$  x 2.204623  $\frac{\text{lb}}{\text{kg}}$ 

PREPARED BY:	CHECKED BY:		
		Date	

Older No. 19116 (01-9)	PAGE OF
SOUTH DIV	JOB NUMBER 7648
BASED ON Soil Plume Maps	oneent. colcs Dump Station
BY P. Calliga CHECKED BY	APPROVED BY DATE 6/1/98



Area = 
$$2r^2$$
  
=  $7r(20)^2$   
=  $1.257 ft^2$ 

SB #

PPS-5BOI - 0405 PPS - SB01 - 1011 PPS - SB02 - 1011

14 mg/kg 2300 mg/kg 6.5 mg/kg

Average TPH conc. = 774 mg/kg.

Date

## APPENDIX I

# ESTIMATED MASS OF CONTAMINANTS IN VADOSE ZONE SOIL MATRIX

Site:	PRODUCT LINE PUMP STATION	
Location:	NAS WHITING FILED, MILTON, FLORIDA	
Client:	SOUTHDIV	
ASSUMPTIONS:		
INPUT:		
Estimated I	mpacted Area	sq ft 1,257
	Average Impacted Thickness	ft 13
Estimated I	mpacted Volume	cu ft 16,341
Average To	tal VOA Concentration	mg/kg 774
CALCULATIONS:		
	•	•
Estimated n	nass of hydrocarbons in soil	
16,341 ft ³ x	1 yd ³ x 1.4 tons x 1016 kg x 774 mg TRPH x (	$1.0 \times 10^{-6}$ ) $\frac{\text{kg}}{\text{rng}} \times 2.204623 \frac{\text{lb}}{\text{kg}}$
		lbs 147
		lbs 147
DEBADER RV.	OUE	oven av.

# **APPENDIX J**

FIELD MEASUREMENTS AND SAMPLING FORMS



THE Power of CATTANDON

From Take Property of Principles Products

View Santaline Los

Elleries Date:

# Petroleum or Petroleum Products Water Sampling Log

VELL		2"	TOTAL W			EPTH TO	84.4	WELL	0.16
			DEPTH (A	-/-		vater (n):		CAPACITY (	ESTUDE
WELL'	volume (54	i) <b>-</b> (Total - (	100		THTOWATER)	- 11	PACITY - - 3	3, 45	
URGE	5 U	BIMWSH	ble Pu	mb.	PURGING INITIATED AT	1208		PURGING 121	9
WELL.	CUMUL				PURGE RATE (gpm):	0.60		TOTAL VOLUME PURGED (24):	18.35
VOLS. URGED	PURGED (gal)	рН	TEMP.	COND.	COLOR		ODOR	APPEARANCE	OTHER
ì	3,45	Ve-33	23.3	0,151	wight Bix	un clight	Fuel like ode		
2	6.9	6.28	22,4	0.124	11	11 100	11		
3	10.35	6.12	72.4	0.111	CI.	(( )	11		
Ц	13'80	6.03	22,2	0.106	( (	1 0	11		
2,	17.25	5,97	22.2	0,099	C	11 60	11		
~	1,47	901	22.4	3	<u> </u>				
	11,40	J. 1 (	22.0	3( )					
	11,4)	5.11	100						
	11,43		14.4						
MPLEI	DBY/				SAMPLING		Osterno	O ALAS (manga	
MPLEI FILLAT	D BY /	NOZAT			SAMPLING ROST GUV.	G DATA SAMPLER(S) SIGNATURE(	2) Andread	J. M. Cum	
MPLEI FILLAT MPLIN	D BY /		M²(aun		SAMPLING ROST GUV.	DATA SAMPLER(S)	(S) (S)	) ME CHAMA SAMPLING ENDED AT:	1330
MPLEI FILLAT MPLIN THOD	D BY / FION G (S): D DECONTAI	JASON. Bo(12 v	Mé(aun		SAMPLING ROST GUV.	G DATA SAMPLER(S) SIGNATURE SAMPLING INITIATED A	(S) (S)	SAMPLING	
MPLEI FILLAT MPLIN ETHOD FIEL SAN	D BY /	JASON . BOLLEY MINATION:	M²(aun	/Brawn	SAMPLING A ROOF EVV.	S DATA SAMPLER(S) SIGNATURE( SAMPLING INITIATED A RED: Y	s 1300	SAMPLING ENDED AT: DUPLICAT	
MPLEI FILLAT MPLIN ETHOD FIEL SAN	D BY / FION FIG FIGS:  D DECONTAIN FIFE CONTAIN	JASON . BOLLEY MINATION:	ME(SUN)  PRESE	/Brown	SAMPLING ROW GUV.  FIELD-FILTE MPLE PRESERV  TOTAL V	DATA SAMPLER(S) SIGNATURE SAMPLING INITIATED A RED: Y ATION OLUME	T: \300 N	SAMPLING ENDED AT: DUPLICAT	e: y n Analysis
MPLEI FILLAT MPLIN ETHOD FIEL SAU S	D BY / FION G (S): D DECONTAI MPLE CONTAI PECIFICATIO	JASON. BOLLEY MINATION: UNER DNS	ME(SUN)  PRESE	Brown &	SAMPLING ROST GUV. FIELD-FILTE MPLE PRESERV ADDED IN	DATA SAMPLER(S) SIGNATURE SAMPLING INITIATED A RED: Y ATION OLUME	S	SAMPLING ENDED AT: DUPLICAT: INTENDED	e: y n Analysis
MPLEI FILLAT MPLIN ETHOD FIEL SAN S.	D BY / FION G (S): D DECONTAI MPLE CONTAI PECIFICATIO MATERIAL CODE	JASON. BOLLEY MINATION: LINER DNS  VOLUME	MECOUNT PRESEIT	Brown &	SAMPLING  ROST GUV.  FIELD-FILTE  MPLE PRESERV  ADDED IN	G DATA SAMPLER(S) SIGNATURES SAMPLING INITIATED A RED: Y ATION OLUMIE FIELD (ml)	T: 1300 N FINAL pH	SAMPLING ENDED AT: DUPLICAT: INTENDED AND/OR!	e: y n Analysis
MPLEI FILLAT MPLIN ETHOD FIEL SAI S.	DBY/ FION  G (S): D DECONTAI  MPLE CONTAI  MATERIAL  CODE  CC  AC  AC	JASON . Bailey MINATION: UNER DNS VOLUME 40 ML	M'E (BUNN PRESEI HC	SARVATIVE SED	SAMPLING  ROST GUV.  FIELD-FILTE  MPLE PRESERV  ADDED IN	S DATA  SAMPLER(S) SIGNATURE( SAMPLING INITIATED A RED: Y ATION OLUME FIELD (mi)	5) 9797 N FINAL pR 5.97	SAMPLING ENDED AT: DUPLICATE INTENDED AND/OR I	e: y n Analysis
MPLEI FILLAT MPLIN THOD FIEL SAN S.	DBY/ TION  G (S): D DECONTAI  PECIFICATIO  ATERIAL  CODE  CG  AG  AG  AG	JASON. Baller MINATION: UNER DNS  VOLUME HOWL	ME(SUM) PRESEI HG	Brown &	SAMPLING ROST GUV. FIELD-FILTE MPLE PRESERV ADDED IN 40	S DATA SAMPLER(S) SIGNATURE; SAMPLING INITIATED A RED: Y ATION OLUMIE FIELD (mi)  OM (	5.47	SAMPLING ENDED AT: DUPLICATE INTENDED AND/OR!  Gol/Gol E O G	e: y n Analysis
MPLEI FILLAT MPLIN THOD FIEL SAN S.	DBY/ FION  G (S): D DECONTAI  MPLE CONTAI  MATERIAL  CODE  CC  AC  AC	JASON. Baller MINATION: UNER DNS  VOLUME  YOML  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIMIT  LIM	MéCaun PRESEI Ha	Brown &	SAMPLING  FIELD-FILTE  MPLE PRESERV  ADDED IN  40  Lite  Lite	S DATA SAMPLER(S) SIGNATURE; SAMPLING INITIATED A RED: Y ATION OLUMIE FIELD (mi)  OM (	5) 1300 N FINAL pR 5.97	SAMPLING ENDED AT:  DUPLICAT:  INTENDED AND/OR!  Gol/Gol E OG FL-Plo	e: y n Analysis
MPLEI FILLAT MPLIN THOD FIEL SAN S	DBY/ TION  G (S): D DECONTAI  PECIFICATIO  ATERIAL  CODE  CG  AG  AG  AG	JASON. Bailer MINATION: UNER DOS VOLUME 40-ML Liter Liter	MéCaun PRESEI Ha	Brown &	SAMPLING  FIELD-FILTE  MPLE PRESERV  ADDED IN  40  Lite  Lite	F DATA  SAMPLER(S) SIGNATURE(SAMPLING INITIATED A RED: Y  ATION  OLUME FIELD (md)  OM (	5.47	SAMPLING ENDED AT:  DUPLICATION  INTENDED AND/OR!  Gol/Gol E OG FL-Plo Glo	e: y n Analysis

NOTE: this does not constitute all the information required by Chapter 62-160, F.A.C.



1927 Rome (Gallespiel)
From Title: <u>Principus et Prilitate Froducts</u>

Way Samine Los

Elimina Desc.

# Petroleum or Petroleum Products Water Sampling Log

	FACILITY VAME: (		nithing F				SAMPL TION:		6 Lynchion	2 10 178
		·		40						
WELL			20241 11		PURGE				WELL	
	TER (la):	Γ ₁₁	TOTAL W DEPTH (F		0	DEPT! WATE		84.31	CAPACITY (	evine Oilu
1 WELL	volume (ex	) - (TOTAL		PTH - DEP	TH TO WATER				ma l	
		- (	100	_ 8	14.31	) <b>x</b>	0,16	_ <u>- '</u> 2	.51	
PURGE	D:			•	PURGING INITIATED A	r. \	000		PURGING (0)	9
WELL	CUMUL			1	PURGE		30,0		TOTAL VOLUME PURGED (24):	13.34
VOLS	PURGED	_	TEMP.	COND.	RATE (20m): COLOR			DOR	APPEARANCE	OTHER
PURGE	2.51	7.98	20.9	(umhos) 0.532	Light Brow	۱۸	Slabl C	nel like od	r	
2	5,02	9,03	21,4	0.381	((	u	< \ \	10		
3	7.53	8,92	21.5	0.354	~ (	(7	10	11		
4	10,04	7,70	31.7	0.291	10	{ {	7	(1		
5	12.55	7.18	21.8	0/575	Ci	((	0	11		
										·
		<u> </u>				-				
				j.	SAMPLIN	G D	ATA			
SAMPLE	D BY /	MESAL	¿ (unn	Braun &	troot Env.		PLER(S) ATURE(S	asos	n g. ant Cann	
SAMPLI METHO	Y.C.	Baller				SAMI	PLING ATED AT	O≅2 b	SAMPLING ENDED AT:	0950
	D DECONTAL	MINATION:	(P) N		FIELD-FILT		Y N		DUPLICAT	E: (P) N
	MPLE CONTA		1	SAI	MPLE PRESER	VATIO	N		INTENDED	ANAI VEIE
	MATERIAL CODE	VOLUME		ED ED	TOTAL ADDED IN			FINAL	ANDVOR	
1	CC	yoml	H	c(	<b>b</b> (	(w		7.18	601/605	
5	C.Cr	4000)		nne		W 0	\	() ()	EOB	
31	J.A.	Liter	14			her		C1 10	D1-400	
5	40p	250ml		,ν e		194		7 11	CID	
5	707	LOUMI	1940	3	25	i) on 1		- "	UTWU	
REMAR	KS:		<b>L</b>					<del></del>		· · · · · · · · · · · · · · · · · · ·
MATERI	AL CODES: A	ig – Amber	GLASS; (	G = CLEAR	CLASS; HDP	- HIG	H DENSII	Y POLYETH	YLENE; O-OTHE	R (SPECIFY)
VELL CA	PACITY: 1.2	S" - 0.06 Eak	n: 2" = 0.1	6 gal/ft: 4"	- 0.65 gaun: 6	- 1.4	enVil: 8	- 2.61 ERVA	: 12" - 5.88 gaVR	

NOTE: this does not constitute all the information required by Chapter 62-160, F.A.C.

#### MONITORING WELL DEVELOPMENT RECORD

Well: MW-01	Depth to Bottom (ft):	Site Geologist: JKON M&Cann
Site: NAS Whiting Field/Pipeline June	HwStatic Water Level Before(ft): 84 .50	Drilling Co.: <u>Gulf Atlantic Orilling</u>
Date Installed: 2/5/98	Static Water Level After (ft): \$4.39	Project: NAS Whiting Field CTO 003
Date Developed: ১/৭/৭४	Screen Length (ft): \\ \frac{5}{}	Project Number: 7648
Dev. Method: AN LIFE	Specific Capacity: 0.16 gal./Ft.	Sheet Nolof
Pump Type: Timco I Somega	Casing ID (in):	

Time	Estimated Sediment Thickness (ft)	Cumulative Water Volume or Pumping Rate	Water Level Reading (ft. below TOC)	Temperature (units <u>°</u> C_)	рН	Specific Conductance (microsiemens/cm)	Turbidity (NTU)	Remarks (odor, color, etc.)
		(gallons/gpm)						
1045		3.46	84.50	17.7	7.90	0.316	10	Brown / Slight organic adov
1120		7.31		19.5	6.95	0.241	999	. **
1155		10.97		72.4	6.72	0, 202	999	Light Brown/ No odor
1235		14.62		23.3	6.46	0.177	999	
1310		18.28	84.39	23.7	6.57	0.173	999	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	·							

### MONITORING WELL DEVELOPMENT RECORD

Well: <u>MW-02</u>	Depth to Bottom (ft):	Site Geologist: TNow MECann
Site: NAS Whiting field / Pipeline Junct	Static Water Level Before(ft): 84.35	Drilling Co.: Gulf Atlantic Orilling
Date Installed: 2/7/98	Static Water Level After (ft): 84.30	Project: NAS Whithy Field CTO 0037
Date Developed: 2/8/98	Screen Length (ft): 15	Project Number: 7648
Dev. Method: Air LIFT	Specific Capacity: 0. 1/6 gal. /ft.	Sheet No.   of
Pump Type: Timco Isomega	Casing ID (in): 2	
system		

Time	Estimated	Cumulative	Water Level	Temperature	рН	Specific	Turbidity	Remarks	5
	Sediment	Water	Reading	(units_° C)		Conductance	(NTU)	(odor, color,	etc.)
	Thickness	Volume or	(ft. below TOC)			(microsiemens/cm)			
	(ft)	Pumping Rate							
		(gallons/gpm)							-
1152		2.66	84.35	19.0	7.12	0.593	-10	Blown 154ght	ordance ogos
1210		5.32		19.7	7,04	0.569	90	. \\	11
1435		7,98		20.5	5.81	0.450	999	Light Brown/	Slight organic
1500		19,61		21.1	8.56	0.389	-10	\`	11
1825		13.30		17, 4	8.82	0.381	999	11	()
1547		15.96		16.3	9.12	o. 381	999	12	11
1605		18,62		16.2	9.03	0. 331	999	\\	/1
1623		21.28		15.0	8.95	0.386	753	\\\	11
1640		23.95	84.30	18.4	8.79	0.349	230		f1

	Subject FIELD DOCUMENTATION	Number SA-6.3	Page 17 of 32
	•	Aevision	Effective Oate
		0	03/01/96
١,			

Children Control
11/1/2

# GROUNDWATER LEVEL MEASUREMENT SHEET

Page ____ of ___

PERSONNEL:	8 P/O	NS: partly	MEASI ADJU REMA	URING DEVICE STMENT FACT .RKS:	
Well ar 7 Personeters		Reference Roint	Reading (Feet)	Groundwater Levation Urset	Complete Line
MMOI	0840		84.41		
MMOS	0842		84.31		
WHF-1467-29			86.05		
WHF-1467-24	1470		87.70		
		_			
_					
			•		
	<u> </u>			<u> </u>	

Measurements to necrest 0.01 faat,

Signaturals): Japan J. M. Elevan

INSTRUMENT NAME I MODEL: Porta FID II
Serial # 8215

MANUFACTURER: Iteath

JOB NAME: rehiling Fixt

Mellone

	VIIVIm	<i>-</i>					
CALIBRATION	INITIAL	STANDARDS	PROCEDURE	ADJUSTMENTS	FINAL	SIGNATURE	COMMENTS
DATE	SETTINGS	USED		MADE	SETTINGS		
	78.99 (0.00)		(C) 10 (C) (C) (C)		Transfer of the same	The state of	
11/6/97	A	inual Cal	ibration	Re- Formal	4 Monston	holeman	
11/22/17	00 Lappan	100ppm		No	magor	peril Dull	
11/22/97	Cl Class	11	1	N. 41	70 11	Devald Devole	chamber Eiller
11133197	400 pmops	1000pm	_	NU	10000-	Jan4/Jh	ach chara Fills
11/24/17	~ ( 1 · ( )	0,01		No	100 pp_	Develo timbe	changed Fifter
11/25/97	LOS HANDAS.	10.00 redu	1	~ 0	100 pps	That There	
2/3/98	<u>"\o</u>	100 pp. Noh	r –	NO	100pm	The 2	
274/98	0	100 MM	)	No	100000	Theles	re
2/5/98	0	100ppm		No	(00)nm	The	مب
2/5/98	Ò	Lioppin	<u> </u>	NO	(voppm.	Real Il	le
2/6/98	0	100 000	garana.	No	100 px -	Much To	ele
2/6/98	0	100 pp	-	ىم	100 Am	The So	och
2/7/98	(2	100 our		NO	MIT II.	Thele Sh	reli
7/8/98	Ø	100pm		N6	100pm	Delos Dow	
		·			,,,		
L							

ATTACHMENT D

 $\mathbf{t}^{i}$ 

03/01/96	0	
Effective Date	Revision	
29 of 32	SA-6.3	FIELD DOCUMENTATION
Page	Number	

Organic Vapor Analyze

INSTRUMENT NAME / MODEL: Pote FID II

MANUFACTURER: Heath

CALIBRATION

JOB NUMBER: 7648

CALIBRATION	INITIAL	STANDARDS	PROCEDURE	ADJUSTMENTS	FINAL	SIGNATURE	COMMENTS
DATE	SETTINGS	USED		MADE	SETTINGS		
dia di Harid	are e la la la la la la la la la la la la la				Maria de Maria		
10/30/97			Adjustment 128	4.05	100 ppm Mellow	Hall Foods	Replayed Simple
11/18/97	100MM WELLOW	100 ppm methode	7/0 ^ #	~ N 6	100pm verton	Gerly Sood	
1/18/97 11:45	Cc. N	11 1/1	11	( )	प ।	9.9.M.	
4/19/97		(( 1)	* f1	11	11.	Devel Gools	
11/20/47	7 11	0 11	9 11	NC /4	C( //	Q.Q.M.	y ephone somple
11/20/97 10:15	200 MM Meth		( II	405	١١ ٧	D.O.M.	,
11/21/97	100 ppm men	one co li	(1 11	No	(* 11	9,9, M.	
11/21197	100000	100 per 14/hm		No	100 gp mellon	Make Took	<u>,                                      </u>
11/21/97	75000	mayery may oct	e —	y-es	1 JOHAM MOther	e Ferreld Tende	-
11/22/97	53 ppr	100 pp.		715	10000- Make	Tak Head	
11/22/97	100 00-	100 000	_	no	100 ppm moke	. Mak Thod	
2/3/98	10 H2	100/1-		مد	100 gm kem	Tel For	te
2/4/98	Opm	(00 ppm		No	100000	The The	ce
2/6/99	Opn	100 pm	Project & Property	NO	100 00~	Jul To	d
2/8/98	0 mm	looppon		N6	106 ppm	Plul Dio	0
	<u> </u>				<u> </u>	-	,
						i	
				<b>i</b> .	1		

ATTACHMENT D

11.1

	ATION.
Revision 0	Number SA-6.3
Effective Date 03/01/96	Page 29 of 32

FIELD DOCUMENT,

Brown & Root Environment:

Brown & Root E	<b>) Invironme</b> nt	al
INSTRUMENT NAME / MODEL :	Electronic	<u></u> لـ
MANUFACTURER: Kec	<u>K</u>	

tranic betwee hered Indication JOB NAME: whiting Finds

JOB NUMBER : 7648

# ATTACHMENT D

 ${\bf t}^{-1}$ 

		FIELD DOCUMENTATION.		
	Revision 0	Number SA-6.3		
,	Effective Date 03/01/96	Page 29 of 32		

CALIBRATION INITIAL STANDARDS PROCEDURE ADJUSTMENTS FINAL SIGNATURE COMMENTS DATE SETTINGS USED MADE SETTINGS de está está avel de la ligita de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución d Dearle Trools 11/15/97 Trst

NSTRUMENT NAME / MODEL : PU Tosty 2

MANUFACTURER: Cole Palmer

JOB NAME: whiling Fixld

JOB NUMBER : 7648

7
TACHMENT

FIELD DOCUMENTATION				
Revision 0	Number SA-6.3			
Effective Date 03/01/96	Page 29 of 32			

CALIBRATION DATE	INITIAL SETTINGS	STANDARDS USED	PROCEDURE	ADJUSTMENTS MADE	FINAL SETTINGS	SIGNATURE	COMMENTS
	7870 (0.00)	USED					Y.
11/15/97	Cal	7.0 bital			7.0	Sent Hood	
	Cal	4.0 6 Ass			4.0	Sent Thod The Thol	_
					· · · · · · · · · · · · · · · · · · ·	7,000	
					•		
				·			
	·	<del> </del>					,